Liang Gao, Jiaping Lin*, Liquan Wang, and Lei Du
Machine Learning-Assisted Design of Advanced Polymeric Materials
Acc. Mater. Res. 2024, 5, 571-584
Chunhua Cai, Hongfeng Tang, Feiyan Li, Zhanwen Xu*, Jiaping Lin*, Da Li, Zhengmin Tang, Chunming Yang, and Liang Gao
Archimedean Spirals with Controllable Chirality: Disk Substrate-Mediated Solution Assembly of Rod–Coil Block Copolymers
JACS Au 2024, 4, 2363-2371
Guomei Zhao#, Tianhao Xu#, Xuemeng Fu, Wenlin Zhao, Liquan Wang*, Jiaping Lin*, Yaxi Hu, Lei Du
Machine-learning-assisted multiscale modeling strategy for predicting mechanical properties of carbon fiber reinforced polymers
Compos. Sci. Technol. 2024, 248, 110455
Wenlin Zhao#, Xuemeng Fu#, Xinyao Xu, Liangshun Zhang*, Liquan Wang*, Jiaping Lin*, Yaxi Hu, Liang Gao, Lei Du, Xiaohui Tian
Design of multicomponent thermosetting polymers with enhanced tensile properties through active learning
Compos. Sci. Technol. 2024, 256, 110779
Qipeng Song, Pengchao Wu, Fan Liu, Zichao Sun, Caixia Jiang, Liang Gao, Jianzhuang Chen, Haibao Jin*, Jiaping Lin*, and Shaoliang Lin*
Ultrathin Polymer Nanotubes Assembled from Side-Chain Amphiphilic Alternating Azocopolymers for the Potential of Highly-Efficient and Photo-Controllable Dye Removal
Macromolecules 2024, 57, 5892-5901
Kexin Cao, Yue Du, Jiaping Lin*, Chunhua Cai*
Regulating the Chirality of the Superhelices Self-Assembled from Block Copolymer/Homopolymer Binary Systems by the Mixing Ratio of the Polymers
Macromolecules 2024, 57, 6514-6521
Tao Zeng, Jiaping Lin, Liangshun Zhang*
Enhancement of Mechanical Performance of Nanostructured Materials by Architectural Design of Pentablock Terpolymers
Macromolecules 2024, DOI: 10.1021/acs.macromol.4c01043
Liang Gao#, Zhengmin Tang#, Jiaping Lin, Chunhua Cai, and Gerald Guerin
Living Growth Kinetics of Polymeric Micelles on a Substrate
Langmuir 2024, 40, 9613-9621
Shuang Song#, Xinyao Xu#, Haoxiang Lan, Liang Gao*, Jiaping Lin*, Lei Du, Yuyuan Wang
Design of Co-Cured Multi-Component Thermosets with Enhanced Heat Resistance, Toughness, and Processability via a Machine Learning Approach
Macromol. Rapid Commun. 2024, DOI: 10.1002/marc.202400337