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ABSTRACT: The lattice theory regarding ternary systems involving a conformationally variable
polypeptide and a randomly coiled polymer presented recently is extended to the case where an external
orientational field of quadrupole type is present. The mixing partition function is elaborated by inclusion
of the energy term arising from the external field to the lattice scheme previously developed. The
calculations carried out show that the external field exerts a marked effect on the phase behavior of the
ternary systems. The isotropic-anisotropic biphasic gap is predicted to shift to lower polymer concentra-
tions and becomes narrower when the external field exists. The entrance of the randomly coiled polymers
into the anisotropic phase is promoted. Influences of the external field intensity, molecular structure
parameters, and compositions have also been studied.

Introduction

Phase behavior of ternary systems comprising a rigid-
rod polymer, a randomly coiled polymer, and a solvent
was first studied by Flory on the basis of the lattice
model.1 According to the theory, above a critical polymer
concentration the ternary solution would phase separate
into an isotropic phase exhibiting somewhat miscibility
between the rigid and coiled polymers and an ordered
anisotropic phase mainly consisting of rodlike compo-
nent and rejecting the coiled polymer with high selectiv-
ity. Such a phase separation is due to the unfavorable
low entropy of the mixing of rods and coils. The general
feature of the theoretical predictions has been verified
by the experimental observations.2-7 The theoretical
treatment carried out by Flory was restricted to some-
what idealized conditions. For instance, the two solute
species considered only represent extremes, the one
being rigid and rodlike and the other sufficiently flexible
to adopt a randomly coiled chain conformation.

Since the original success of the Flory lattice theory,
many efforts have been directed toward improving the
original model to cover much more complex situations.
For example, Ciferri et al.3,8 and Sasaki et al.5 have
analyzed the effect of the interaction parameter ø23 for
the pairs of the mesogenic and coiled polymers. It was
found that if ø23 > ø23

c (the critical value for mixing),
the two polymers should demix at some percentage
composition in the undiluted state. As in the case of ø23
, ø23

c, the phase separation would be triggered by
entropy effects related to the formation of the me-
sophase. The contribution from the anisotropic interac-
tions to the phase equilibria of the ternary systems has
been examined by Blonski et al.9 and Bianchi et al.10

The calculation results show that the anisotropic phase
becomes acceptable for a certain amount of the flexible
component after the orientation-dependent interactions
are incorporated into the lattice scheme. Theoretical
extension for the ternary solutions which contain a
rigid-rod solute with flexible side chains, a randomly

coiled polymer, and a solvent was reported by Bal-
lauff11,12 and Inomata et al.13,14 It has been found that
the presence of the flexible side chains could enhance
the miscibility between the rodlike and coiled polymers
in both isotropic and anisotropic phases. Polymer chain
conformation changes in the isotropic-anisotropic tran-
sition present an important issue associated with the
phase behavior, and they may pertain to semirigid
macromolecules in general.15-23 Recently, Lin et al. have
analyzed the effect of the chain conformation variation
of the mesogenic polymer on the phase diagrams of the
ternary systems.23 The conformationally variable chain
is exemplified by polypeptide in which each unit is able
to assume either a helix or a random coil form. The
mobile equilibria between the two states determine the
overall chain rigidity. The theoretical treatment was
carried out by introducing of a term related to the free
energy contributed from the chain conformation changes
into the original lattice model proposed by Flory. A
pronounced increase of the miscible isotropic zone was
predicted when the chain rigidity of the polypeptide in
the isotropic phase is reduced. The polypeptide chain
tends to adopt a fully rigid helix form as long as it enters
the anisotropic phase where the randomly coiled poly-
mer is essentially excluded.

On the other hand, the effect of an external orienta-
tional field on the isotropic-anisotropic equilibria pre-
sents an interesting problem in relation to both funda-
mental studies and fabrication process.24-27 Within the
framework of the lattice model, Marrucci and Ciferri
have first studied the influence of the external orien-
tational field on the binary solution of the rigid-rod
molecules.28 They concluded that the application of an
external orientational field results in narrowing the
region of the biphasic phase separation and shifting the
isotropic-anisotropic transition concentration to a lower
value. On the basis of the lattice model, Shibaev et al.
have studied the influence of the external orientational
field on the phase behavior of a thermotropic liquid
crystal polymer containing stiff and flexible fragments.29

Phase diagrams for various strengths of the external* To whom correspondence should be addressed.
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field and various polymer chain structures were con-
structed. It was found that the external field could
stiffen the flexible fragments in the polymer chain,
resulting in stabilization of the liquid crystal phase.
Recently, a detailed study of the effect of the external
orientational field on the phase behavior of a binary
system involving a conformationally variable polypep-
tide has been performed by Lin et al.30 It turns out, from
the calculations, that the isotropic-anisotropic phase
transition induced by an external orientational field is
possible for the polypeptide even with very high chain
flexibility as long as the coil-helix chain conformational
changes are allowed. The external orientational field
promotes the combined action of the coil-helix transi-
tion and liquid crystal formation. Since the phase
behavior of the ternary systems involving a conforma-
tionally variable chain and the influence of the external
field on the binary systems are rather well understood,
it is of crucial interesting to know the effect of the
external field on the phase behavior of the ternary
systems.

In the present work, the lattice model regarding
ternary systems involving a polypeptide and a polymer
with inherently flexible chain conformation, which was
proposed in our previous work, was further generalized
by introducing an energy term contributed from an
external orientational field of quadrupole symmetry.
The calculations carried out show that the isotropic-
anisotropic phase boundary shifts to lower polymer
concentrations and becomes narrower when an external
orientational field is applied to the ternary systems. The
randomly coiled polymers are facilitated to enter the
anisotropic phase by the external field. The effects of
the external field intensity, molecular structure param-
eters, and compositions were also examined.

Theory
The external orientational field considered in the

present studies is a quadrupole symmetry field, i.e., a
field in which the potential energy of a rectilinear chain
fragment is proportional to -cos2 φ, where φ is the angle
between the direction of the fragment and the orienta-
tion axis. Such a field appears when nonpolar polymeric
chains with uniaxial anisotropic susceptibility are sub-
jected to an electrical or magnetic field.29-32 Therefore,
the dipole term of polymer chain is not considered in
the current model. When the external orientational field
is applied to the ternary systems involving a polypeptide
and a randomly coiled polymer, an extra energy term
should be included in the lattice scheme. According to
our previous work30 and Shibaev et al.,29 the energy
term is written as

where n2 is the number of the polypeptide consisting of
x2 segments, θ is the fraction of units in the helical
conformation, and the dimensionless parameter ε0
defines the intensity of the external orientational field.
As shown in Figure 1 where the mesogenic polymer with
conformationally variable chain is schematically il-
lustrated, the averaging in eq 1 is performed over all
angles Ψi between the rigid helix segment and the
orientation axis and over all Ψj between the links of the
flexible coil component and the orientation axis. Since
the electrical or magnetic anisotropy of the polypeptide
is much larger than that of the coiled polymer, the

interaction between the external orientational field and
coiled polymer is neglected for simplicity in the present
work.

The mixing free energy expression for a ternary
system involving a conformationally variable chain and
a randomly coiled polymer has been written out in our
previous work.23 If the ternary system is subjected to
an external field, an extra term as expressed by eq 1
should be included in the lattice scheme. After incor-
porating eq 1, the mixing free energy expression for an
athermal ternary system in the presence of the external
field becomes

where n1, n2, and n3 are the numbers of the solvent,
polypeptide, and coiled polymer with lengths of 1, x2,
and x3, respectively, xj is the number-average of x2 and
x3, v1, v2, and v3 represent the volume fractions of the
corresponding components, n0 and np equal (n1 + x2n2
+ x3n3) and (n2 + n3), respectively, s and σ denote
respectively the statistical weight for a unit in the
helical state relative to the coil and the weighting factor
for initiation of a helical sequence, m represents the
number of repeat units (i.e., peptide residues) in the
lattice segment, F is the fraction of units that mark the
beginning of a helical sequence, â is a Lagrangian
multiplier, and Q and S0 are orientation-related quanti-
ties that have been defined in ref 23.

Extensive computations of -ln ZM of eq 2 demonstrate
that the free energy of mixing invariably decreases with
increasing θ. The minimum value of -ln ZM is located
at θ ) 1 for all the parameters examined. Including the
energy term of the external orientational field does not
change the general feature of the dependence of -ln ZM
on θ as reported in our previous work.23 In the aniso-
tropic phase, the maximum stability occurs at θ ) 1.
Under such a circumstance, the last term of eq 2, which
is contributed from the external orientational field,
reduces to -ε0n2x2〈cos2 Ψi〉. With further substituting
the conditions for the anisotropy as specified in ref 23,
eq 2 becomes

Since the polypeptide chain takes a fully helix form
in the anisotropic phase, the exact lattice treatment
according to Flory and Ronca33 is utilized for the

Eex/kT ) -ε0n2[θx2〈cos2 Ψi〉 + (1 - θ)x2〈cos2 Ψj〉] (1)

Figure 1. Schematic representation of the conformationally
variable chain considered in the present theory.

-ln ZM ) n1 ln v1 + n2 ln v2 + n3 ln v3 +
xjnp(1 - 1/xj) - n0[(1 - Q) ln(1 - Q) + Q] -

mx2n2[θ(â + ln s) + F ln(σS0) - (1 - θ - F) ln(1 -
θ - F) - F ln F + (1 - θ) ln(1 - θ)] -

ε0n2[θx2〈cos2 Ψi〉 + (1 - θ)x2〈cos2 Ψj〉] (2)

-ln ZM ) n1 ln v1 + n2 ln v2 + n3 ln v3 +
xjnp(1 - 1/xj) - n0[(1 - Q) ln(1 - Q) + Q] -

n2[ln(y/x2)
2 + mx2 ln s + ln σ] - ε0n2x2〈cos2 Ψi〉 (3)
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deduction of the disorientation parameter y. The exter-
nal field also affects the orientational distribution which,
hence, makes a further contribution to the reduced free
energy. Therefore, fp adopted by Flory and Ronca is
redefined as29,30

and the quantity Q is given by

where the prime symbol (′) is appended to denote the
anisotropic phase.

Chemical potentials of the components in the aniso-
tropic phase can be readily obtained by partially dif-
ferentiating eq 3 with auxiliary eqs 4-7. The results
are shown as

where vp is equal to v2 + v3.
In the state of the isotropy, the orientational order

parameter S ) (3〈cos2 Ψi〉 - 1)/2 ) 0; thus, 〈cos2 Ψi〉 )
1/3. The 〈cos2 Ψj〉 term is also equal to 1/3 due to the
random orientations.29,30 Therefore, the last term of eq
2 appears to be -ε0n2x2/3. Incorporating this result,
together with the conditions obtained for the isotropy
according to ref 23, into eq 2 gives

Partial differentatiation of the above equation yields
the reduced chemical potentials of the components in
the isotropic phase.

Numerical Calculations
The relations governing the phase equilibria of the

ternary systems in the presence of the external orien-
tational field can be obtained by equating eq 8 to eq 12,
eq 9 to eq 13, and eq 10 to eq 14 with auxiliary relations
of eqs 4-7.

Figure 2 illustrates the influence of the external field
intensity on the phase diagrams of the ternary systems.
Typical results are shown for ε0 ) 0.225 (a) and 0.265
(b). Other parameters used in the calculations are

indicated in the caption. Binodals for the isotropic and
anisotropic phases are heavy lined. Tie lines joining
conjugate phases in equilibrium are light dashed. The
length of the tie line indicates the broadening of the
biphasic gap. The longer the tie line, the wider the
isotropic-anisotropic phase boundary. For clarity, only
the upper portion of the phase diagram, where vp < 0.20,
is shown. From Figure 2, it can be seen that the phase
separation tends to begin at lower overall polymer
concentrations (vp) with increasing the ε0 value. Con-
comitantly with the shift of the biphasic gap, the
isotropic-anisotropic phase boundary becomes narrower
as indicated by the variation of the tie line length. When
the intensity of the external field is lower, as shown in
Figure 2a, the binodal for the anisotropic phase coin-
cides with the binary polypeptide-diluent axis, sug-
gesting a nearly complete exclusion of the randomly
coiled polymer from the anisotropic phase. However,
when the external field intensity becomes stronger
(Figure 2b), the binodal tends to depart from the
polypeptide-diluent axis, which indicates that the
anisotropic phase becomes acceptable for a certain
amount of the flexible component. It should be noted
that the equilibrium anisotropic phase contains polypep-
tide chains that are substantially more rigid than those
inhabiting the isotropic phase. A coil-helix transition
takes place in the polypeptide chain upon the anisotro-
pic phase formation. The coupled transitions are pro-

fp ) ∫0

π/2
sinpΨ exp(-R sin Ψ - ε0x2 sin2 Ψ) dΨ (4)

R ) -(4/π)x2 ln[1 - v2′(1 - y/x2)] (5)

y ) (4/π)x2(f2/f1) (6)

Q ) v2′(1 - y/x2) (7)

(µ1′ - µ1°′)/RT ) ln v1′ + vp′(1 - 1/xj′) -
ln(1 - Q) - Q (8)

(µ2′ - µ2°′)/RT ) ln v2′ + x2vp′(1 - 1/xj′) - x2Q -
ln f1 - mx2 ln s - ln σ - ε0x2 (9)

(µ3′ - µ3°′)/RT ) ln v3′ + x3vp′(1 - 1/xj′) -
x3 ln(1 - Q) - x3Q (10)

-ln ZM ) n1 ln v1 + n2 ln v2 + n3 ln v3 + xjnp(1 -
1/xj) + mx2n2 ln[1 - F/(1 - θ)] - ε0n2x2/3 (11)

(µ1 - µ1°)/RT ) ln v1 + vp(1 - 1/xj) (12)

(µ2 - µ2°)/RT ) ln v2 + x2vp(1 - 1/xj) +
mx2ln[1 - F/(1 - θ)] - ε0x2/3 (13)

(µ3 - µ3°)/RT ) ln v3 + x3vp(1 - 1/xj) (14)

Figure 2. Ternary phase diagrams calculated for ε0 ) 0.225
(a) and ε0 ) 0.265 (b). Components are solvents (1), polypeptide
solute (2), and randomly coiled polymer (3). Invariant param-
eters used in the calculations are x2 ) 100, x3 ) 100, θ ) 0.8,
σ ) 10-4, and m ) 10.
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moted by the external orientational field as indicated
by the shift of the biphasic gap to lower polymer
concentrations.

Shown in Figure 3 is a plot where the volume
fractions v3′ along the binodal for the anisotropic phases
are plotted against v2′ for the ternary systems corre-
sponding to those in Figure 3, i.e., systems with ε0 )
0.225 (a) and 0.265 (b). The result for ε0 ) 0 (c) is also
included for comparison. With increasing v2′, the value
of v3′ increases sharply from the point at v2′ for the
binary system of solvent and polypeptide to a maximum,
then followed by a decrease toward zero. For the system
with ε0 ) 0, the v3′ values are negligible small. When ε0
is increased, the curve shifts to the lower value of v2′
and turns broader. Concomitantly, the maximum value
of v3′ increases. For example, v3′(max) is 2.417 × 10-52

for ε0 ) 0 and becomes 1.806 × 10-5 for ε0 ) 0.225 and
2.331 × 10-2 for ε0 ) 0.265.

Figure 4 gives typical results showing the influence
of the variation of θ parameter in the isotropic phase
at a given value of ε0 ) 0.265. With increasing θ value
from 0.7 to 0.8, the biphasic region shifts upward to
lower polymer concentrations. Meanwhile, the isotropic-
anisotropic phase boundary turns narrower, and the
binodal for the anisotropic phase departs from the
polypeptide-diluent axis. The energy provided by the
external orientational field both facilitates the coil-helix
transformation in the isotropic-anisotropic phase tran-
sition and accelerates the entrance of the random coils
into the anisotropic phase. When the helix fraction in
the isotropic phase is increased, the conformational
energy penalty associated with the transition to the
helix form in the anisotropic phase becomes smaller.
Therefore, much more random coils are forced into the
anisotropic phase, as shown by Figure 4a.

Another important structure parameter of polypeptide
chain is σ which is associated with the length of the
helical sequence; i.e., the smaller σ, the longer the rigid
sequence. According to the calculations not included,
decrease of σ shows a similar effect on the phase
diagrams to that of the increase in the θ parameter. No
features are revealed.

Figure 5 shows the effect of the chain length on the
phase equilibria of the ternary systems. Typical phase
diagrams are shown for the systems with (a) x2 ) 100,
x3 ) 100 and (b) x2 ) 100, x3 ) 50. At given values of x2
and ε0, the binodal for the anisotropic phase becomes
markedly departing from the polypeptide-dilute axis
when the chain length of the randomly coiled polymer

is decreased, suggesting the entrance of the randomly
coiled polymer into the anisotropic phase is promoted.
The calculations also show that the isotropic-anisotro-
pic phase boundary tends to be narrower with decreas-
ing the x3 value. As revealed by calculations not
included, at given values of x3 and ε0, an increase in x2
also renders more random coils enter the anisotropic
phase. Simultaneously, the transition region shifts to
lower concentrations and becomes narrower.

Figure 6 gives the calculated maximum value frac-
tions of randomly coiled polymers accepted in the
anisotropic phase as a function of chain length. Shown
in Figure 6a is a plot where v3′(max) is plotted against
x3 at a given value of x2 for various ε0. As can be seen,
the maximum amount of random coils in the anisotropic
phase increases with decreasing x3. When the external
orientational field is present, the curve shifts upward
to higher positions, suggesting more random coils enter
the anisotropic phase. The effect of the external field
tends to be more pronounced as the value of x3 is
decreased. The influence of the variation of x2 at a given
value of x3 is demonstrated in Figure 6b for various ε0.
The v3′(max) increases gradually with increasing x2,
then followed by a sharp rise. The existence of the
external field is shown to accelerate the entrance of the
random coils into the anisotropic phase.

The above considerations are readily turned to the
binary systems consisting of a polypeptide chain and a
randomly coiled polymer by setting v1 ) 0 and v1′ ) 0.
The calculation results show that above a critical value

Figure 3. Plots of volume fractions v3′ of the randomly coiled
polymer in the anisotropic phase against v2′ for the polypeptide
solute in that phase for ε0 ) 0.225 (a), ε0 ) 0.265 (b), and ε0 )
0 (c). Invariant parameters used in the calculations are similar
to those in Figure 2.

Figure 4. Ternary phase diagrams calculated for θ ) 0.8 (a)
and θ ) 0.7 (b). Invariant parameters used in the calculations
are x2 ) 100, x3 ) 100, σ ) 10-4, m ) 10, and ε0 ) 0.265.
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of x2 the binary systems phase separate into an aniso-
tropic phase containing fully helical polypeptides and
an isotropic phase. Curves a-d in Figure 7 show v3 in
the isotropic phase of the biphasic systems in equilib-
rium as a function of x2 for various values of ε0 and θ.
Curves a and b have calculated for ε0 ) 0.15 and 0 at a
given θ value of 0.8, while the curves c and d are for ε0
) 0.15 and 0 at θ ) 0.2. As shown by curves a-d,
increase in chain flexibility in the isotropic phase, i.e.,
decrease in θ value, renders the phase separation take
place at larger values of x2. In the isotropic phase the
polypeptide and coiled polymer exhibit some miscibility
when x2 is small. With increasing x2, the volume
fractions of polypeptide (1 - v3) become vanishingly
small, indicating the polypeptide component is almost
completely excluded from the isotropic phase. When an
external orientational field is present, the critical x2
value for the isotropic-anisotropic phase separation
tends to shift toward lower values. Comparison of curves
a, b with curves c, d also demonstrates that the external
field effect is more pronounced when the θ value
becomes smaller.

Figure 8 shows the ratio of v3′ to v2 in the conjugate
isotropic phase for the binary systems corresponding to
those shown in Figure 7. As can be seen, the rejection
of the random coils from the anisotropic phase is quite
severe. When an external orientational field is applied,
the ratio of v3′/v2 becomes larger, indicating that the
random coils are forced into the anisotropic phase. A

larger external field intensity gives rise to more random
coils to enter the anisotropic phase, according to the
calculations. It is also found that the external field has
a stronger influence on the systems with smaller θ
values as comparing curves a, b with curves c, d.
However, such an effect is less marked.

Discussion
It appears from the calculations of the present work

that the external orientational field exerts a pronounced
influence on the properties of the phase equilibria of the
ternary systems. It shifts the isotropic-anisotropic
phase boundary to lower polymer concentrations and
narrows the biphasic gap. The anisotropic phase be-
comes stable when the external field exists. For both
the ternary and binary systems examined, the randomly

Figure 5. Ternary phase diagrams calculated for x2 ) 100,
x3 ) 100 (a) and x2 ) 100, x3 ) 50 (b). Invariant parameters
used in the calculations are ε0 ) 0.258, θ ) 0.8, σ ) 10-4, and
m ) 10.

Figure 6. Plots of volume fractions v3′ of randomly coiled
polymer accepted in the anisotropic phase as a function of
chain length of randomly coiled polymer x3 (a) and polypeptide
x2 (b) for various ε0 at given values of x2 ) 100 and x3 ) 100,
respectively. Invariant parameters used in the calculations are
θ ) 0.8, σ ) 10-4, and m ) 10.

Figure 7. Volume fractions v3 of randomly coiled polymer in
the isotropic phase of biphasic systems plotted against x2 for
various values of ε0 and θ. Invariant parameters used in the
calculations are x2 ) x3, σ ) 10-4, and m ) 10.

Macromolecules, Vol. 37, No. 14, 2004 Phase Behavior of Ternary Systems 5465



coiled chains are forced into the anisotropic phase. The
existence of the external field facilitates the coupled
transitions of the liquid crystal formation and the coil-
helix transformation. The coiled parts of the polypeptide
chains are promoted to convert into the helix rigid form
and contribute to the overall anisotropy of the liquid
crystal. In other words, the conformational ordering
effect,18,19 i.e., intermolecular orientational order pro-
moting intramolecular conformational changes, becomes
more pronounced when an external field is present.
With respect to the polymer chains having fixed ran-
domly coiled conformation, when they are forced into
the anisotropic phase by the external field, the order of
the liquid crystal could be perturbed due to the dilution
effect, as it can be easily traced through eqs 4-7.

Some experimental evidences are available in the
literature, supporting the theoretical results. Toyoshima
et al. have examined the effect of external electrical field
on the phase behavior of poly(γ-benzyl L-glutamate)
dissolved in an organic solvent.34 It was found that the
anisotropic to isotropic transition temperatures increase
with increasing the intensity of the applied field,
indicating the external field could stabilize the aniso-
tropic phase. Similar results have also been reported
in a recent study on the phase behaviors of poly(γ-benzyl
L-glutamate)/organic solvent solutions.35 The presence
of the external electrical field was found to shift the
isotropic-anisotropic phase boundary to lower polymer
concentrations, giving a stabilized anisotropic phase.
These experimental systems can be regarded as the case
where v3 ) 0 and v3′ ) 0 in the present work. As can be
seen from the binary polypeptide-diluent axis in Figure
2, the critical volume fraction for the anisotropic forma-
tion shifts to lower value when the intensity of the
external field increases. It suggests that the anisotropic
phase tends to be stabilized as the external field
intensity becomes higher. Such a result is qualitatively
in line with the experimental observations as reported.
So far, the experimental data available are limited.
More observations are being expected for the compari-
son with the theoretical results.

Since the equilibria of the helix-coil type can serve
as a model for the alternating rigid-flexible block
copolymers,21 the conclusions reached through the
present analyses should be quite general. Mixed systems
comprising rigid and flexible polymers show important
applications in fabrication of high-performance compos-
ites.36,37 These kinds of systems are also commonly
found in nature, such as connective tissue, vitrous body
of the eye, etc.37,38 Therefore, the elucidation of the

phase behavior of the ternary systems involving a rigid-
rod polymer and a randomly coiled polymer is of great
significance from both a fundamental and an applied
point of view. Because of the unfavorable low entropy
of mixing of the rigid and flexible polymers, it is usually
difficult to process a composite with a fine dispersion
of the components in an anisotropic state. Several ways
have been suggested to improve the poor miscibility.
One is to modify the rodlike polymer by attaching
substituents of similar structure to that of the matrix
polymer.11-14 The other is to increase the compatibility
through specific intermolecular interactions between the
rigid and coiled polymers,39 such as hydrogen bonding,40

charge-transfer complex formation,41 and ion-ion in-
teractions.42,43 The random coils are also predicted to
enter the anisotropic phase, when the orientation-
dependent interactions between the molecules are con-
sidered. Such an effect could become more pronounced
for the systems with larger polarizabilities along their
bond axes than perpendicular thereto.18 The present
theoretical calculations show that the anisotropic phase
becomes capable of admitting flexible components when
an external orientational field is present. The obtained
results might provide a useful guidance for processing
mixed systems where two polymers could be well
dispersed in an anisotropic condition.

As put forth by Flory,44 the lattice model, despite its
artificiality, has proved successful in the treatments of
the liquid crystallinity in the polymeric systems.18,19 The
versatility of this theory has permitted its extensions
to polydisperse systems,45,46 mixtures of rodlike poly-
mers with random coils,1 and some of the many kinds
of semirigid chains.47,48 In our series work, the lattice
model is further extended to the treatments of the
biopolypeptide systems, such as reentrant transitions
in the polypeptides,20-22 ternary mixtures involving a
polypeptide and a random coil,23 and binary mixtures
of a polypeptide and a solvent in the presence of an
external orientational field.30 The subject studied in this
work presents another example of the versatility of the
lattice theory. After including the free energy arising
from the external orientational field into the lattice
scheme, the lattice theory provides a reasonable insight
for the phase behaviors of the ternary systems contain-
ing a polypeptide and a random coil in the presence of
the external field.
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