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ABSTRACT: We employed nonequilibrium molecular dy-
namics simulations to study viscoelastic properties of nano-
particle-tethering polymers. Effects of nanoparticle−polymer
interaction and molecular architecture on the viscoelasticity are
investigated. The results show that the nanoparticle-tethering
polymers with attractive nanoparticle−polymer interaction
exhibit enhanced storage and loss moduli relative to the
homopolymers or bare nanoparticle/polymer blend. In
addition, the storage and loss moduli of nanoparticle-tethering
polymers can be further enhanced through tuning their
molecular architectures, such as increasing the nanoparticle diameter or decreasing the polymer chain length. From the
physical origin, the enhancement of dynamic moduli originates from the slowdown of polymer dynamics, which arises from the
attractive nanoparticle−polymer interaction, the tethering covalent bond, and the obstacle of nanoparticles. The present work
not only reveals the physical origin of distinct viscoelasticity of nanoparticle-tethering polymers, but also provides useful
information for preparing advanced materials based on these organic/inorganic components.

1. INTRODUCTION

Embedding inorganic nanoparticles (NPs) into polymer
matrices can improve the mechanical, thermal, optical, and
rheological properties of polymer materials due to the
synergistic effect between the NPs and the polymer
matrices.1−4 These organic/inorganic hybrid materials may
find potential applications in semiconductor, electronic devices,
and biomedical products.5−7 The organic/inorganic composites
generally exhibit distinct viscoelastic properties because the
organic component provides toughness and the inorganic one
provides stiffness. Hence, the investigation on the viscoelasticity
of this type of material is essential both in theoretical research
and engineering applications. However, the immiscibility
between the organic polymers and the inorganic NPs generally
results in the aggregation of NPs, which may adversely affect
the viscoelasticity. Some chemical or physical modifications are
performed to eliminate this adverse effect. Tethering the NPs
with the polymer chains via covalent bonds is an effective
approach. It prevents the aggregation of NPs through the
sterical stabilization by surrounding polymers.8−12

Recently, many types of NPs have been used to tether with
polymer chains and form NPs-tethering polymers (NTPs),
such as C60-poly(methyl methacrylate),13 silica-polystyrene,14,15

Fe3O4-polystyrene,
16 polyhedral oligomeric silsesquioxane-

polystyrene,17,18 and C60-polystyrene.
19 In these NTPs, NPs

are well dispersed in the polymer matrices or self-assemble into
various anisotropic microstructures, such as strings and
connected sheets.20−25 Much effort has been devoted to

investigate the viscoelasticity of NTPs.26−31 It was revealed that
tethering NPs with polymer chains not only increases the NP
dispersion but also enhances the dynamic moduli, that is,
storage (G′) and loss (G″) moduli. For instance, Genix and
coauthors studied the linear rheology of silica NPs grafted by
styrene butadiene rubber.26 As the grafting density increases,
the average aggregation degree of silica NPs decreases, leading
to the enhancement of terminal dynamic moduli and the
increase of relaxation times. Kumar’s group investigated the
mechanical properties of silica-tethering polystyrene (PS)
dispersed in PS matrices.30 In this hybrid material, the ductility
of glassy PS matrices substantially increases, while the elastic
moduli and the yield stress maintain. In spite of these studies,
the physical origin of enhanced viscoelasticity in the NTP
system is still not understood. Moreover, the dynamics of
polymers in NTPs, which is different from that of free polymer
chains, is not clear in experiments.
Apart from the experiments, theoretical simulation methods,

such as dissipative particle dynamics,32,33 polymer reference
interaction site model,34 and molecular dynamics (MD)35−43

are useful tools to investigate the viscoelasticity and the
dynamics of NTPs. For example, equilibrium molecular
dynamics (EMD) is utilized to study the viscoelasticity of
polymer matrices embedding NPs.38 It is found that the
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enhancement of dynamic moduli originates from additional
distortion of shear field and slower relaxation dynamics of
tethered chains compared to the matrix chains. Similarly, the
effect of NPs on the relaxation behaviors of polymer chains was
also confirmed by the EMD simulations in Kröger’s group.44,45

However, in the EMD, the conformation and the relaxation
dynamics of polymer chains at nonequilibrium state cannot be
monitored. Escobedo and coauthors performed nonequilibrium
molecular dynamics (NEMD) simulations to investigate the
steady-state shear properties of NTPs.46 They found that the
shear-induced increase of chain alignment can lead to the
reduction of viscosity. Chen et al. adopted NEMD simulations
to explore the strain amplitude-dependence viscoelasticity (i.e.,
Payne effect) of polymer/NPs composites.47 They found that
the Payne effect strongly depends on the NP−polymer
interaction and the NP loading. In our previous work, we
also employed the NEMD method to investigate the
mechanical properties of NTPs.48 It was found that the
NTPs exhibit enhanced tensile modulus relative to the pure
polymers and the bare NPs/polymer blends, which arises from
the increases in bond orientation, bond stretching, and
nonbonding interaction. Despite these studies on the steady-
state behaviors, it is still necessary to study the oscillatory
viscoelasticity of NTPs. Many important issues, such as the
physical origin of distinct viscoelasticity as well as the relaxation
dynamics of tethered polymers and NPs, remain to be studied.
The success of NEMD simulations makes it ready to be
extended to explore the polymer dynamics and predict the
viscoelasticity of NTPs.
In this work, we present for the first time the NEMD

simulations of oscillatory viscoelasticity of NTPs. The effects of
NP−polymer interaction, polymer chain length, and NP
diameter on the viscoelasticity of NTPs were examined. It
was observed that the dynamic moduli of polymeric melts are
enhanced by tethering the NPs with the end of the polymer
chains, and the enhancement of dynamic moduli becomes more
remarkable with increasing the strength of NP−polymer
interaction, the NP diameter or decreasing the polymer chain
length. To reveal the physical origin of the enhancement of
dynamic moduli, mean square distances of various motion units
(i.e., NPs, polymer chains, and single polymer beads) are
monitored. This study could provide useful information to
understand the relaxation dynamics of NPs and polymers as
well as the relationship between the viscoelasticity and the
microstructure of NTPs.

2. METHODS AND MODEL

2.1. Coarse-Grained Molecular Dynamics Method. In
the present work, we constructed a coarse-grained model of
NTPs, as illustrated in Figure 1a. In this model, a polymer bead
represents a cluster of atoms, consisting of numbers of repeat
units.49−51 Each polymer chain is mimicked as a linear bead−
spring chain containing L beads with diameter σ. Every
nanoparticle is represented by a Lennard-Jones (LJ) sphere
with diameter d and tethered with a polymer chain via covalent
bond. Thus, the tethered density of NPs is given by 1/πd2. To
ensure the same density of each component, masses of polymer
beads and NPs are set as m and (d/σ)3m, respectively.
In the MD method, the potentials consist of nonbonding

potential Uij and bonding potential Ubond. The nonbonding
potential Uij is given by the modified LJ 12:6 potential acting
between any pair of ith and jth beads52
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where εij is the interaction strength, and rij
c is the cutoff distance.

To account for the excluded volume effect, the interaction
range is offset by rEV, whose values of NP−NP, NP−polymer,
and polymer−polymer are, respectively, set as d-σ, (d-σ)/2, and
0. The cutoff distance rij

c determines whether the interaction
between the ith and jth beads is attractive (rij

c > 21/6σ) or
repulsive (rij

c ≤ 21/6σ). In the present work, the interactions are
truncated at an attractive cutoff distance (rP−P

c = 2.5σ) for the
polymer−polymer interaction and a repulsive cutoff distance
(rN−N

c = 21/6σ) for the NP−NP interaction.48 The strengths of
polymer−polymer interaction εP−P and the NP−NP interaction
εN−N are fixed at ε. To simulate the systems having different
NP−polymer interaction modes (i.e., attractive, repulsive, and
neutral) and strengths, rN−P

c and εN−P for the NP−polymer
interaction are variable.
The bonding potential Ubond is given by the modified finite

extensible nonlinear elastic (FENE) potential53
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where k and R0 are, respectively, the elastic coefficient and the
maximum extensible bond length. k and R0 are set as 30ε/σ2

and 1.5σ to avoid unphysical bond crossing.48

In the MD simulations, reduced units are adopted for all
physical quantities.54 The units of mass, length, and energy are
defined by m, σ, and ε, respectively. The time unit τ is defined
as τ = (mσ2/ε)1/2, and its real value can be estimated by
matching the simulated lateral diffusion coefficient to the
experimentally measured value.54

Figure 1. (a) Coarse-grained model of NPs-tethering polymer. The
polymer chain is tethered onto the NP with diameter d. The blue and
red beads represent the NP and polymer beads, respectively. (b)
Typical curves of stress and strain as a function of time for NPs-
tethering polymers. The strain amplitude and shear frequency are γ0 =
0.05 and ω = 0.2τ −1, respectively. The strain is given in advance and
the stress calculated by eq 5 is in response to the applied strain. The
solid lines are the sinusoidal fitted curves.
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2.2. Nonequilibrium Simulation. Nonequilibrium simu-
lation based on the standard MD method is employed to
simulate the polymeric systems subjected to an oscillatory shear
field. Lees-Edwards “sliding brick” boundary conditions were
the most widely adopted to introduce a shear field.55,56

Alternatively, we employ a “box deforming” technique which is
conceptually identical to the Lees-Edwards boundary con-
ditions.47,57 In the simulations, SLLOD algorithm coupled with
the “box deforming” technique is adopted to introduce a shear
field in x-direction and velocity gradient in y-direction

γ

γ

= + ̇

= − ̇

d
dt

r
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dt

m v

r
v e
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f e

i
i x i y

i
i
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where ex is the unit vector along x-direction. ri, vi, and fi are the
position, velocity, and force of ith bead, respectively. ri,y and vi,y
are the magnitudes of corresponding vector, where the
subscript y denotes the y-component of vector. γ ̇ is the shear
rate, which is the time derivative of shear strain γ. In the present
work, the shear strain γ is given as a sinusoidal function γ0
sin(ωt), where γ0 and ω are respectively the strain amplitude
and the shear frequency. Thereby, the shear rate γ ̇ is a cosine
function ωγ0 cos(ωt). For a viscoelastic fluid under oscillatory
shear, the stress in the shear plane is also a sinusoidal function,
σxy = σ0 sin(ωt + δ), where the phase angle δ is between 0° and
90°. This sinusoidal function can be decomposed as σxy = G′
sin(ωt) + G″ cos(ωt), where G′ is the storage (in-phase)
modulus and G″ is the loss (out-phase) modulus

σ
γ

δ
σ
γ

δ′ = ″ =G Gcos( ), sin( )0

0

0

0 (4)

In the nonequilibrium simulation, the σ0 and δ are calculated
through the sinusoidal curve fitting (see Figure 1b) of shear
stress σxy

∑ ∑σ = +
≠V

M vv r F
1 1

2i
i i i

i j
ij ij

(5)

Here, V denotes the volume of simulation box and the angular
bracket represents ensemble average.
2.3. Model and Condition. We constructed a series of

NTPs designated as PLN-d, where P and N denote the polymer
beads and the NPs, respectively. For instance, the NTP with
chain length L = 24 and NP diameter d = 2σ is denoted as
P24N-2. To generate an initial configuration, a large system with
low NTP volume fraction ϕNTP was constructed in a cubic box
of 100 × 100 × 100σ3 and then compressed to the ϕNTP of 0.45
(note that the size of NPs is not changed in the compression
process). Herein, the ϕNTP is defined as the ratio of the volume
of particles (including NPs and polymer beads) to the volume
of box. For systems with different molecular architectures, the
edge lengths of the compressed box were tuned to maintain the
fixed NTP volume fraction of ϕNTP = 0.45. For example, the
edge lengths of box were set as 22.7σ for the system containing
315 P24N-2 chains. After the construction of initial config-
urations, standard EMD simulations were performed in NPT
ensemble by using the Nose-Hoover barostat and thermostat.
Velocity-Verlet algorithm was adopted for 5 × 107 MD steps to
achieve an equilibrium state with time step of Δt = 0.004τ. To
explore the oscillatory viscoelasticity, NEMD simulations were

subsequently performed by transforming the cubic box to a
triclinic one.57 To check the finite size effect, the simulations
with larger box size were conducted, such as a sample having
558 P24N-2 chains in the box with edge lengths of 27.4σ. It is
found that the simulations with different box sizes produce
similar structures and viscoelastic properties. All of the
simulations were carried out by using the large atomic/
molecular massively parallel simulator (LAMMPS) developed
by Sandia National Laboratory.58

3. RESULTS AND DISCUSSION

In this work, we focused on the linear viscoelasticity of NPs-
tethering polymers PLN-d. First, we investigated the viscoelas-
ticity of representative NTP system and compared it with cases
of homopolymer and bare NPs/polymer blend. Then, the effect
of NP−polymer interaction on the viscoelasticity of NTP
systems was examined. Last, the molecular architecture
parameters, such as the NP diameter d and the polymer
chain length L, were tuned to regulate the viscoelasticity of
NTPs.

3.1. Enhanced Viscoelasticity of NPs-Tethering Poly-
mers. In this subsection, we focused on the linear
viscoelasticity of P24N-2 system with attractive NP−polymer
interaction. The corresponding cutoff distance rN−P

c and
strength εN−P were set as 2.5σ and 5.0ε, respectively. As a
comparison, a model of homopolymer P24 was also constructed
where the rP−P

c and εP−P were the same as those in the P24N-2
system (i.e., rP−P

c = 2.5σ and εP−P = 1.0ε).
It is well-known that the dynamic moduli of NPs-filled

polymer composites under oscillatory shear depend on the
strain amplitude γ0 and the shear frequency ω. The dependence
of dynamic moduli on strain amplitude, which is known as the
Payne effect,59−61 should be examined to ensure that the
systems are in the linear viscoelastic regime. Figure 2a shows

Figure 2. (a) Storage (G′) and loss (G″) moduli as a function of strain
amplitude for the P24N-2 system under shear frequency of ω = 0.2τ −1

and ω = 0.02τ −1. (b) G′ and G″ as a function of shear frequency for
the NPs-tethering polymers P24N-2 and the homopolymers P24. The
solid lines in the plot are the fitted curves of data obtained in the low
regime of shear frequency from 0.01τ−1 to 0.06τ−1.
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the strain-dependent storage modulus (G′) and loss modulus
(G″) of P24N-2 system under shear frequencies of ω = 0.2τ −1

and ω = 0.02 τ −1. The flow behaviors display two distinct
regimes: strain-independent linear regime at small strain
amplitudes and strain-dependent nonlinear regime at large
strain amplitudes. In the regime of small strain amplitude, the
shear flow is not strong enough to disturb the equilibrium
structures, leading to the platform of G′ and G″. In the regime
of large strain amplitude, G′ gradually decreases with increasing
strain amplitude while G″ exhibits a pronounced maximum
value, which originates from the structural breaking and the
increase of energy dissipation. From the strain amplitude
sweeps of G′ and G″ (Figure 2a), it is clearly demonstrated that
the NTPs exhibit the Payne effect. To ensure the linear
viscoelastic behaviors, the strain amplitude is fixed at γ0 = 0.05
within the linear regime in the following simulations.
Figure 2b shows the curves of G′ and G″ versus shear

frequency ω for the P24N-2 NTPs and the P24 homopolymers.
The measured range of ω is 0.01−1τ −1. The data at lower
frequencies are not shown because the statistic errors of stress
are too large in lower frequency regime due to the strong
thermal fluctuations. It can be seen from Figure 2b that both G′
and G″ of P24N-2 system are larger than those of P24 system,
suggesting that the NTPs exhibit enhanced viscoelasticity
compared to the homopolymers. The P24 system exhibits
liquid-like viscoelasticity (i.e., G′ < G″) with the terminal
behavior of G′ ∼ ω2 and G″ ∼ ω1.62 For the P24N-2 system,
however, a crossover is observed in the curves of G′ and G″
versus ω, indicating that a liquid-to-solid transition takes place
with increasing shear frequency. Below the transition point (ωc
≈ 0.1τ−1), G′ is smaller than G″, and the power law indexes of
G′ and G″ plots in the low frequency regime are respectively
0.8 and 0.6, which are less than those for the P24 system. The
relationships, G′ ∼ ω0.8 and G″ ∼ ω0.6, deviate the terminal
behaviors predicted by the Rouse model,62 originating from the
slowdown of polymer relaxation via the incorporation of
tethered NPs. Above the transition point, the P24N-2 system
shows solid-like viscoelasticity (i.e., G′ > G″). As the ω exceeds
0.6τ−1, G″ decreases with increasing ω, while G′ approaches a
platform modulus GN. Although the platform modulus of P24
system is absent within the measured range, it can be estimated
as GN = ρkBT/NP = 0.85σε−3, where ρ and NP are, respectively,
the density and the amount of polymer bead.62 The platform
modulus of P24N-2 system (7.2σε−3) is much larger than the
estimated GN of P24 system, further indicating that the NTPs
can enhance the viscoelasticity of polymers.
The viscoelasticity of bare NPs/polymer blends was also

examined to verify the enhancement of viscoelasticity of NTPs.
A blend system, where the molecular architecture and the
bead−bead interaction are the same as those in the P24N-2
system, was constructed. The frequency sweeps of G′ and G″
for both cases are shown in Figure S1a of Supporting
Information (SI). It can be seen that the blend system also
exhibits liquid-like viscoelasticity (G′ < G″) in the low
frequency regime and solid-like viscoelasticity (G′ > G″) in
the high frequency regime. The existence of transition point
(marked by the arrows) is also clarified by the curve of loss
factor tan δ versus shear frequency ω shown in Figure S1b of
SI. Compared to the blend system, G′ of P24N-2 system
increases in the low frequency regime while G″ maintains
invariable, but the transition point shifts to a lower frequency
(from 0.2τ−1 to 0.1τ−1). These observations manifest the fact
that tethering NPs with the end of polymers enhances the

elastic properties while maintains the flow properties compared
to the bare NPs/polymer blends.
To get deeper insight into the physical origin of enhanced

viscoelasticity of NTPs, the dynamics of NPs and polymers was
examined. In the simulations, we monitor the motions of
various basic units including NPs, polymer beads, and polymer
chains. The dynamic properties of these motion units are
estimated by the diffusion coefficients of NPs (DN), polymer
beads (DP), and center-of-mass of polymer chains (Dcm). The
diffusion coefficients are related to the mean square displace-
ments (MSDs) of corresponding motion units63

∝

= ⟨ − ⟩

→∞
D

t

t

1
6

lim
d
d

MSD

MSD [R ( ) R (0)]

k
t

k

k k k
2

(6)

where Dk and Rk(t) are, respectively, the diffusion coefficient
and the position of corresponding motion unit at time t. The
angular bracket represents ensemble average. Figure 3a,b show
the MSDs as a function of simulation time for the P24N-2
system and the P24 system, respectively. The motion units in
both systems exhibit diffusive behaviors (i.e., the MSDs increase
linearly with time), which are used to estimate the diffusion
coefficients. For the P24N-2 system, the Dcm, DN, and DP have

Figure 3. Mean square displacements (MSDs) of polymer beads
(blue), NPs (black), and center-of-mass of polymer chains (red) as a
function of simulation time for (a) the P24N-2 system and (b) the P24
system. The diffusion coefficients are highlighted in the plots. (c)
MSDs of the head and tail beads, center-of-mass of polymer chains,
and NPs as a function of time for the P24N-2 system. The inset shows
the definitions of the head and tail beads.
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the values of 2.05 × 10−4 σ2/τ, 2.47 × 10−4 σ2/τ, and 3.82 ×
10−4 σ2/τ, respectively. The Dcm and DP for the P24 system are
2.21 × 10−3 σ2/τ and 2.63 × 10−3 σ2/τ, respectively. Compared
to the P24 system, both the Dcm and DP of P24N-2 system reduce
by an order of magnitude. These data of diffusion coefficients
suggest that the motions of whole chains and polymer segments
are slowed down, which results in slower stress relaxation and
enhanced dynamic moduli of NTPs. The curves of MSDs as a
function of time for the NPs/polymer blend are also plotted
and shown in Figure S2 of SI. The Dcm, DN, and DP of blend
system are larger than those of P24N-2 system. This suggests
that NPs tethering with the end of polymers dramatically
suppress the polymer motion.
The previous works about the viscoelasticity of NPs/polymer

blend have demonstrated that the slowdown of polymer
motion originates from the attractive NP−polymer interaction
and the obstacles of NPs.32,64 A salient feature of the NTPs is
that the slowdown of polymer motion could also arise from the
covalent bond connecting the NPs and the polymers. To
examine the effect of this bond on the mobility of polymers, the
MSDs of head and tail beads of polymer chains are calculated
and shown in Figure 3c. The definitions of head and tail beads
are shown in the inset of Figure 3c. It can be seen that the
MSDs of head beads are much smaller than those of tail beads,
suggesting that the introduction of covalent bond significantly
suppresses the diffusion dynamics of head beads and then the
suppression passes on to other beads. As a result, the motion of
whole polymers slows down, leading to the enhancement of
dynamic moduli. In Figure 3c, it is also demonstrated that the
diffusion velocity of the head beads is larger than that of the
NPs. The reason is that the head beads can not only
transnationally move with the NPs, but also motion around
the NP surfaces. In the following simulations, the other effects,
(i.e., the attractive NP−polymer interaction and the obstacles
of NPs) were also investigated by tuning the NP−polymer
interaction and the molecular architecture.

3.2. Effect of NP−Polymer Interaction. In this
subsection, we focused on the effect of NP-polymer interaction
on the viscoelasticity of NTPs. We considered three types of
NP−polymer interaction, including attractive, repulsive, and
neutral interactions. As mentioned above, the cutoff distance
rN−P
c and the interaction strength εN−P in the Lennard-Jones
potential govern the NP−polymer interaction. The rN−Pc was set
as a repulsive cutoff distance 21/6σ for the repulsive system and
an attractive cutoff distance 2.5σ for the attractive system. To
realize the neutral system, the rN−P

c was set as 1.4 σ between the
repulsive and attractive cutoff distances. The values of εN−P for
all of the systems were set as 5.0ε. The NP diameter and the
polymer chain length were chosen as d = 2σ and L = 24,
respectively.
Figure 4 shows the equilibrium structures and the radial

distribution functions g(r) between NPs for the P24N-2 systems
with attractive, repulsive, and neutral NP−polymer interactions.
The NPs uniformly disperse in the attractive and neutral
systems, as shown in Figure 4a,b. In the attractive system, the
g(r) plot shows a pronounced peak at r = 3.15σ and weak peaks
at larger distance appear around r = 4.0σ, r = 5.0σ, and r = 5.9σ
(see Figure 4d), further verifying that the NPs are well
separated by the polymers as schematically illustrated in the
inset of Figure 4d. In the neutral system, however, the g(r) plot
shows a peak at r = 2.15σ (see Figure 4e), indicating that a
certain amount of NPs directly contact each other. This
suggests that the dispersion degree of NPs in the attractive
system is larger compared to that in the neutral system. In the
repulsive system, the NPs form double-sheet structure and are
separated by the polymer phase (see Figure 4c). The g(r) plot
shows a stronger peak at r = 2.15σ (see Figure 4f) than that in
the neutral system, suggesting that the dispersion degree of
NPs is the smallest in the repulsive system.
The viscoelastic properties of P24N-2 systems with attractive,

repulsive, and neutral NP−polymer interactions were exam-
ined. G′ and G″ as a function of shear frequency for these

Figure 4. Equilibrium structures of P24N-2 systems with (a) attractive, (b) neutral, and (c) repulsive NP−polymer interaction. Radial distribution
functions between NPs for P24N-2 in (d) attractive, (e) neutral, and (f) repulsive systems. The NP diameter and polymer chain length are set as d =
2σ and L = 24, respectively. The blue and red colors in the structural snapshots are assigned to the NPs and polymer beads, respectively.
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systems are shown in Figure 5a. Both G′ and G″ exhibit similar
tendencies in response to the shear frequency for the attractive

and neutral systems, but the moduli in the attractive system are
larger than those in the neutral system. This result verifies that
the attractive NP-polymer interaction plays a role in the
enhanced viscoelasticity of NTPs. The relaxation dynamics of
polymers is slowed down by the attraction of NPs. One can
also observe that G′ and G″ in the repulsive system are much
smaller than those in the other two systems, which arises from
the relaxation of stress through the NPs aggregation.
It should be noted that the NTPs in the repulsive system

form double-sheet structures with anisotropic characteristic and
the shear direction is perpendicular to the sheets for calculating
the G′ and G″ in Figure 5a. The G′ and G″ are also calculated
by shearing in the direction parallel to the sheets and the results
are shown in Figure 5b. It can be seen that G′ and G″ calculated
by the parallel shear are smaller than those calculated by the
perpendicular shear. The reason is that the length scale of NP
sheets in the parallel direction is larger than that in the
perpendicular direction; therefore, the stress can relax even
faster through the NP sheets in the parallel shear. In the
attractive and neutral systems, however, the structures of NTPs
are isotropic, and thus the dynamic moduli calculated by

shearing in all the three orthogonal directions are close to each
other (not shown).
Since the attractive system exhibits distinct viscoelasticity, the

effect of NP−polymer interaction strength on the viscoelasticity
in the attractive system was further explored. The curves of G′
and G″ versus shear frequency for various interaction strengths
εN−P are shown in Figure 5c. For clarity, the plots are shifted
vertically, and the shift factors β are equal to 1, 1, 3, and 3 for
the systems with εN−P = 2.0ε, εN−P = 5.0ε, εN−P = 8.0ε, and
εN−P = 12.0ε, respectively. Figure 5c shows that both G′ and G″
increase with increasing εN−P. For the systems of εN−P = 8.0ε
and εN−P = 12.0ε, G′ is significantly larger than G″, indicating
that these NTPs exhibit solid-like viscoelastic characteristics.
This behavior is different from that in the systems of εN−P =
2.0ε and εN−P = 5.0ε, where a liquid-to-solid transition takes
place near ω = 0.1τ −1. Compared to the system of εN−P = 5.0ε,
the transition point in the system of εN−P = 2.0ε shifts to a
larger frequency and the values of G′ and G″ are smaller. The
absence of liquid-to-solid transition in systems of εN−P = 8.0ε
and εN−P = 12.0ε attributes to the fact that the transition points
are shifted to a lower frequency out of measured range.
Figure 6 shows the MSDs of polymer beads and center-of-

mass of polymers as a function of time in the attractive system

with various strengths of NP−polymer interaction. One can
deduce that the DP decreases significantly from 3.82 × 10−4 σ2/
τ to 4.12 × 10−5 σ2/τ as εN−P increases from 5.0ε to 8.0ε. It
even drops to 1.08 × 10−5 σ2/τ in the system with εN−P = 12.0ε.
These further verify that the attractive NP−polymer interaction
suppresses the motion of polymer beads. A similar tendency is
observed for Dcm with increasing εN−P (i.e., the values of Dcm
are 2.05 × 10−4 σ2/τ, 9.08 × 10−6 σ2/τ, and 9.65 × 10−7 σ2/τ
for the systems of εN−P = 5.0ε, εN−P = 8.0ε, and εN−P = 12.0ε,
respectively). One can also deduce that the increase of εN−P has
more marked effect on the Dcm than that on the DP, suggesting
that the motion of whole chains can be suppressed more
prominently than that of polymer beads. These behaviors

Figure 5. (a) Frequency sweeps of G′ and G″ in the attractive,
repulsive, and neutral systems. (b) Frequency sweeps of G′ and G″ in
the parallel shear and perpendicular shear of repulsive system. (c)
Frequency sweeps of G′ and G″ for the attractive systems with various
εN−P. For clarity, the plots in (c) are shifted by factors β of 1, 1, 3, and
3 for the systems of εN−P = 2.0ε, εN−P = 5.0ε, εN−P = 8.0ε, and εN−P =
12.0ε, respectively.

Figure 6. MSDs of (a) polymer beads and (b) center-of-mass of
polymers as a function of simulation time for the P24N-2 systems with
various NP−polymer interaction strengths of εN−P = 5.0ε, εN−P = 8.0ε,
and εN−P = 12.0ε. The diffusion coefficients are highlighted in the
plots.
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originate from the fact that the motion of a polymer chain is
frustrated near the NP surface where the polymer beads could
not pass through.
3.3. Effects of Molecular Architectures. As illustrated

above, tethering NPs with polymers suppresses the polymer
motions and enhances the dynamic moduli. We then
constructed NTPs with various molecular architecture param-
eters, such as the NP diameter d and the polymer chain length
L, to examine how these parameters affect their viscoelasticity.
In the simulations, the NTP volume fraction ϕNTP is invariable
and the volume of the initial box is fixed at 22.7 × 22.7 × 22.7σ
3, hence, the number of NTPs is tuned. The cutoff distance and
interaction strength of NP-polymer interaction are set as 2.5σ
and 5.0ε, respectively.
Three types of NTPs with d = 2σ, d = 3σ, and d = 4σ

(denoted by P24N-2, P24N-3, and P24N-4, respectively) are
constructed, and the frequency sweeps of G′ and G″ for these
NTPs are shown in Figure 7a. Both G′ and G″ of the P24N-3

and P24N-4 systems are larger than those of the P24N-2 system,
indicating that increasing the NP diameter d can also enhance
the dynamic moduli. From the curves of MSDs versus time (see
Figure S3a,b of SI), one can see that the polymer dynamics is
suppressed dramatically as d increases. To get insight into the
microscopic origin of slowdown of polymer dynamics, the
mean square end-to-end distance ⟨Ree

2⟩ and the mean square
radius of gyration ⟨Rg

2⟩ of polymers in these systems were
calculated and shown in Figure 7b. As proposed by Kremer, the
mean square end-to-end distance of polymers is ⟨Ree

2⟩ = l2lp
2(L-

1),62 where l is the average bond length and lp is the persistence
length. As shown in Figure 7b, the ⟨Ree

2⟩ and ⟨Rg
2⟩ increase

with increasing d, thereby the persistence length lp increases
because both l and L are invariable. On the one hand, the
polymers become stiffer (i.e., the lp increases) with increasing

NP diameter, which arises from the loss of conformational
entropy caused by the obstacle of NPs. On the other hand, the
polymers have to drag heavier NPs as the NP diameter
increases. These two factors lead to the slowdown of polymer
dynamics.
The viscoelasticity of NTPs with various polymer chain

lengths was also examined. The curves of G′ and G″ as a
function of shear frequency ω for three samples of P16N-2,
P24N-2, and P32N-2 are shown in Figure 8a. The P16N-2 system

exhibits solid-like viscoelasticity (i.e., G′ > G″ in the measured
range). The P24N-2 and P32N-2 systems show liquid-to-solid
transition with increasing ω, and the transition point shifts to a
higher frequency for the P32N-2 system compared to that for
the P24N-2 system. Additionally, both G′ and G″ decrease with
increasing L, which could arise from the decrease of size ratio of
NPs to polymers. To characterize the polymer size, the ⟨Ree

2⟩
and ⟨Rg

2⟩ of polymers were calculated and shown in Figure 8b.
Both the ⟨Ree

2⟩ and ⟨Rg
2⟩ increase linearly with increasing L,

and thus the persistence length lp maintains invariable
according to the relationship of ⟨Ree

2⟩ = l2lp
2(L-1). This

suggests that the conformation of polymers is unaffected by
increasing the polymer chain length. For the P16N-2 system, the
polymer size is smaller than the NP size (i.e., Rg/d < 1, see
Figure 8b), and thus, the mobility of polymers is suppressed
significantly because the polymers have to drag heavy NPs. On
the contrary, for the P24N-2 and P32N-2 systems, the polymer
size is larger than the NP size (i.e., Rg/d > 1, see Figure 8b), and
thus, the suppression of polymer motions is weaker than that in
P16N-2 system. This is further verified in the MSD curves
(Figure S3c,d of SI) that the MSDs increase by an order of
magnitude, as the polymer chain length increases from 16 to
24.
From the observations of Figures 7 and 8, it is implied that

the ratio of the NP size to the polymer size could play a role in

Figure 7. (a) G′ and G″ as a function of shear frequency for the P24N-
d systems with NP diameters d = 2σ, d = 3σ, and d = 4σ. The plots are
shifted by the factors β of 1, 5, and 5 for the systems of d = 2σ, d = 3σ,
and d = 4σ, respectively. (b) The mean square end-to-end distance
⟨Ree

2⟩ and the mean square radius of gyration ⟨Rg
2⟩ as a function of NP

diameter. The εN−P and the rNP
c have values of 5.0ε and 2.5σ,

respectively.

Figure 8. (a) G′ and G″ as a function of shear frequency for the NPs-
tethering polymers with various chain lengths L. The NP diameter is
fixed at d = 2σ. The plots are shifted by the factors β of 5, 1, and 0.2 for
the systems of P16N-2, P24N-2, and P32N-2, respectively. (b) ⟨Ree

2⟩ and
⟨Rg

2⟩ as a function of polymer chain length. The εN−P and the rNP
c are

set as 5.0ε and 2.5σ, respectively.
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the viscoelasticity. To evaluate the role of NP size, we
conducted a series of NEMD simulations for the NTPs with
similar NP volume fraction ϕN, which is defined as the ratio of
NP volume to the sum of NP and polymer bead volume.
Herein, we fix the ϕN at 0.5 (e.g., P8N-2 and P24N-3). The
frequency sweeps of G′ and G″ for the P8N-2 and P24N-3
systems are shown in Figure S4 of SI. It can be seen that the
moduli of P8N-2 system are close to those of P24N-3 system.
This suggests that the mechanical properties of different
systems are similar when the values of ϕN are close. Despite the
similarity, it will be devoted to thoroughly elucidating the
generality of viscoelasticity of NTPs in terms of the
nanoparticle volume fraction in further work.
3.4. Comparison with Experimental Observations.

This study has shown that the dynamic moduli are enhanced
in the NTPs compared to the homopolymers (see Figure 2b)
and bare NPs/polymer blends with the same polymer chain
length and NP diameter (see Figure S1a). Some experimental
observations in the literatures are available, supporting our
theoretical results. For instance, Genix and coauthors studied
the linear rheology of silica NPs tethering styrene butadiene
rubber (SBR).26 They found that the characteristic relaxation
time and the dynamic moduli gradually increase with increasing
the tethering density of silica NPs. Archer’s group investigated
the dynamics of SiO2-tethered-cis-1,4-polyisoprene.

65 They
found that the tethered systems can enhance the dynamic
moduli compared to the untethered system. These exper-
imental results are consistent with our theoretical results (i.e.,
the NTPs show enhanced dynamic moduli and slower polymer
dynamics compared to the bare NPs/polymer blend).
Additionally, our simulation results confirm the experimental

observations that the dynamic moduli of systems with well
dispersed NPs are higher than those of systems with aggregated
NPs structures (see Figures 4a−c and 5a). Liu et al. studied the
structure-dynamic relationships in the composites of PS-grafted
iron oxide using X-ray photon correlation spectroscopy.28 The
characteristic relaxation of polymers reduces dramatically with
decreasing the dispersion degree of NPs, which is confirmed by
our results of Figure 5a. Our simulation results also reveal that
the molecular architectures, such as the NP diameter and the
polymer chain length can tune the viscoelasticity. It was found
that increasing the ratio of the NP diameter to the polymer
chain length can enhance the dynamic moduli. This result is in
accordance with some experimental results. For example,
Archer’s group also observed that increasing the molecular
weight of tethered polymer speeds up chain relaxation
dynamics and reduces dynamic moduli.65

Beyond the reproductions of general features of experimental
findings for the NTPs, the simulations can reveal the physical
origin of viscoelastic properties of polymeric systems and
deepen the understanding of experimental observations. This is
a practical signification for experimentally designing and
fabricating advanced materials. In the simulations, it is
convenient to visualize the morphology and to obtain the
molecular information. For instance, the dispersion state of
NPs in the polymer phase can be easily characterized by the
radial distribution function g(r) between NPs (see Figure 4d−
f). The NPs in the system of attractive NP−polymer interaction
are well dispersed as reflected by the pronounced peak
appearing at r = 3.15σ in the g(r) curves, while they are
aggregated in the repulsive system as the peak appears at r =
2.15σ. Moreover, it is facile to calculate the dynamic parameters
which can reveal the microscopic origin of enhanced

viscoelasticity in the attractive system. For example, the
diffusion dynamics of NTPs can be easily elucidated by the
MSDs of NPs, polymer beads, and center-of-mass of polymer
chains. The diffusion coefficients of these motion units in the
attractive system increase compared to those of the
homopolymer (see Figure 3), and the increase of diffusion
coefficients gets more significant as the strength of the NP−
polymer interaction increases (see Figure 6).

4. CONCLUSIONS
We applied the nonequilibrium molecular dynamics simulations
to study the viscoelasticity of NPs-tethering polymers. The
results show that the storage and loss moduli can be enhanced
in the NPs-tethering polymers, compared to those in the
homopolymers or bare NPs/polymer blends. From the physical
origin, the enhancement of dynamic moduli originates from the
slowdown of the dynamics of both the whole polymers and the
segments. The slowdown of polymer dynamics arises from (1)
the attractive NP−polymer interaction, (2) the covalent bond
between the NPs and the polymer chains, and (3) the obstacle
of NPs. In addition, the effect of molecular architectures, such
as the NP diameter and the polymer chain length on the
viscoelasticity of NPs-tethering polymers were examined. It was
found that increasing the NP diameter or decreasing the
polymer chain length can enhance the dynamic moduli. Our
research revealed the physical origin of distinct viscoelasticity of
NPs-tethering polymers and could provide useful information
for preparing advanced materials based on the organic/
inorganic hybrid strategy.
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