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ABSTRACT: We conducted a dissipative particle dynamics simulation
on the motion of polymer-grafted nanoparticles in entangled polymer
melts. Three regimes for the mean square displacement of the
nanoparticles were discovered at different time scales. The nanoparticles
undergo Brownian diffusion at short and long time scales and exhibit
subdiffusive behavior at intermediate time scales. The short-time
diffusion can be approximated as the motion of bare nanoparticles,
while the long-time diffusion is associated with the entire polymer-grafted
nanoparticle. The long-time Brownian diffusion was found to be non-
Gaussian, which originates from the hopping diffusion of polymer-grafted
nanoparticles in entangled polymer melts. The results nicely support the experimental findings and provide a comprehensive insight
into the anomalous dynamics of polymer-grafted nanoparticles in polymer melts.

■ INTRODUCTION
Incorporating nanoparticles into polymeric matrices can cause
a remarkable improvement in the mechanical properties of
polymer nanocomposites relative to the neat polymers.1−3

Additionally, the mobility of nanoparticles can influence the
processing properties, such as the viscosity and melt flow of the
polymer nanocomposites. Therefore, a deep understanding of
the dynamic behavior of nanoparticles in polymer melts is of
both technological and fundamental importance for optimizing
both the mechanical properties and processing properties. The
movement of nanoparticles in polymer melts does not always
obey the Stokes−Einstein relation for Brownian diffusion, that
is, the mean square displacement (MSD) is proportional to the
elapsed time t (⟨r2⟩ ∼ tυ with υ = 1) over a broad time range.4

The nanoparticle can undergo a confined subdiffusive motion
(υ < 1) in polymer melts.5−10 Even for Brownian diffusion, the
displacement distribution in polymer melts could sometimes
deviate from Gaussian forms, which is termed “anomalous yet
Brownian” diffusion.11−15

Nanoparticles are usually functionalized by tethering
polymer chains to the nanoparticle surfaces to control the
dispersion of nanoparticles in polymer matrices.16 The grafted
chains tend to retard the motion of the nanoparticles, which
renders the mobility of polymer-grafted nanoparticles (PGNs)
much more complicated than that of bare nanoparticles.17 Ge
and Rubinstein developed a scaling theory for the motion of
PGNs in unentangled polymer melts.18 They predicted that
the MSD of PGNs could be approximated by the MSD of bare
nanoparticles in particle-dominated regimes and the MSD of
the branch point of a star polymer in brush-dominated
regimes. Despite their systematic scaling study, theoretical and
simulation studies that deal with PGN mobility in entangled

polymer melts remain scarce. Entanglement, however, is a
universal phenomenon in polymers due to their high molecular
weight. As such, the dynamic behavior of PGNs in entangled
polymer melts needs to be explored, especially for nano-
particles of a size commensurate with the correlation length of
matrix polymers.
Experimentally, inconsistent conclusions have been made

from different studies. Most experimental studies suggested
that the diffusion of PGNs is associated with the relaxation of
grafted chains and the interpenetration between grafted chains
and matrix polymers.19−21 In contrast, Winey et al. recently
suggested that the grafted polymers of both moderate
molecular weight and grafting density suppress nanoparticle
mobility via enlarging the effective size of nanoparticles rather
than through enhanced friction via entanglements between
grafted chains and matrix polymers.22 In addition, the
experiments can only provide information at large length and
time scales because they are limited by instrument accuracy.
For example, Lungova et al. studied the mobility of polyhedral
oligomeric silsesquioxane (POSS) grafted with poly(ethylene
glycol) (PEG) immersed in PEG matrices using neutron spin-
echo (NSE) spectrometry.16 They observed a crossover from
subdiffusion following a t0.56 power law to Brownian diffusion
in entangled matrices at the time scales longer than 1 ns, but
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the dynamic behavior at the time scales shorter than 1 ns is
unknown.
In this work, we studied the motion of PGNs in entangled

polymer melts using dissipative particle dynamics (DPD)
simulations. Particular attention was paid to the scaling of the
MSD of nanoparticles with time and the pattern of non-
Gaussian diffusion in the long-time Brownian stage. We found
that the nanoparticle can undergo three-stage diffusion, that is,
short-time Gaussian diffusion, intermediate-time subdiffusion,
and long-time non-Gaussian diffusion, where the appearance of
non-Gaussian diffusion behavior at long time scales was due to
the hopping of PGNs. A comparison with existing experimental
findings shows that the simulation results can support the
experimental results. The present work could provide essential
information for controlling nanoparticle dispersion in polymer
matrices and for insight into the rheological/mechanical
properties of polymer nanocomposites.

■ METHODS
We employed a mesoscopic simulation approach, that is, dissipative
particle dynamics (DPD),23−27 to investigate the motion of
nanoparticles in polymer-grafted nanoparticle systems. In the DPD
method, a bead represents a group of atoms. The motion of the beads
obeys Newton’s equation of motion dri/dt = vi and mdvi/dt = fi,
where ri, vi, fi, and mi are the position, velocity, total force, and mass of
ith bead, respectively. For an unentangled polymer, four pairwise
forces are usually applied to describe the interaction between ith and
jth beads, that is, a conservative force Fij

C, a dissipative force Fij
D, a

random force Fij
R, and a spring bond force Fij

S. The interaction force
between the two bonded beads of each matrix copolymer (or graft
chain) is given as a harmonic spring force Fij

S = C(1 − rij/req)rîj with a
spring constant C = 100 and an equilibrium bond distance req = 0.86
rc (rc is a cutoff distance). For an entangled polymer, the modified
segmental repulsive potential (mSRP),28 developed by Sirk et al.
based on the work of Kumar and Larson,29,30 was also applied to
remove unphysical chain crossings in DPD simulations. The mSRP is
given as

B d dF d(1 / )kl kl kl
mSRP

c= − ̂ (1)

where B is a force constant, dc is the bond−bond cutoff distance, and
dkl and d̂kl are the midpoint-to-midpoint distance and the unit vector
between kth and lth bonds, respectively. For the ith and jth beads in
the kth bond, this force is decomposed into bead forces: Fi = Fkl

mSRP/2
and Fj = Fkl

mSRP/2. Segmental repulsion interactions for adjacent bonds
were excluded. We adopted the parameters recommended by Sirk et
al., that is, B = 100, dc = 0.8, and kθ = 2.0.28 Here, kθ is a force
constant for the angle bending potential Ubend = kθ(1 + cos θ) (θ is
the angle formed by two consecutive bonds). For the details of the
DPD method, see Section 1 of the Supporting Information.
The PGN consists of eight polymer chains with one end uniformly

grafted to the surface of a spherical nanoparticle (see Figure 1). The
spherical nanoparticle was treated as a dodecahedron consisting of 20
vertex beads and a center bead. The harmonic spring force with C =
300 and req = 0.5rc was applied to two closet vertex beads. The
harmonic spring force with C = 300 and req = 0.7rc was applied
between the center bead and the vertex bead. The radius Rb of the
nanoparticle is ca. 1.5 times the equilibrium center-to-vertex distance,
that is, Rb = 1.05rc. An angle potential in the form of FA = −k(θ − θ0)
is applied to two closed bonds on the surface of the dodecahedron,
where k = 300 and θ0 = 108° in this work. Such treatment is to ensure
that the nanoparticles are a rigid body. The interaction strengths
between all species are 25, and therefore, the system is athermal.
All the simulations were performed using the Large-scale Atomic/

Molecular Massively Parallel Simulator (LAMMPS) software.31 In the
simulation, the standard DPD was first carried out to equilibrate the
polymer structures (t = 1000τ), and then the mSRP was turned on.
The time step of Δt = 0.005τ0 was chosen to ensure the numerical

stability of the simulation and smaller topology violations.28 The time

unit τ0 can be formulated by mr k T/0 c
2

Bτ = , where m, rc, τ0, and kBT
are the units of mass, length, time, and energy, respectively.

■ RESULTS AND DISCUSSION
We considered several PGNs diffusing in a linear polymer melt.
The PGN consists of eight polymer chains with one end
uniformly grafted to the surface of a spherical nanoparticle with
radius Rb ∼ 1.05rc (see Figure 1 and the inset of Figure 2a),

which could be the prototype model of representative POSS
grafted with PEG.16 The concentration of PGNs is so dilute
that the PGNs move individually in polymer melts. We
assumed that the grafted polymers with NG monomers per
chain and the matrix polymers with NP monomers per chain in
the melt are chemically identical, and therefore, the PGNs in
the polymer matrix can be considered nonsticky athermal
nanoparticles without enthalpic interaction.16 The segmental
repulsive potential was introduced into the DPD simulation to
simulate the entanglement effect in polymer melts.28−30 In the
polymer melt, whether or not the polymers (or grafted chains)
are entangled depends upon the length of the polymers (note
that the entanglement length is NP = 14 and the tube diameter
a is ca. 4rc).

28

The mobility of PGNs in the polymer melt was quantified by
the time dependence of their MSD. Figure 2a shows the
representative results of the calculated MSDs. In this
simulation, the matrix polymers were chosen to be long
enough (NP = 40) to guarantee that the polymers in melts are
interentangled. One can see that the MSD behaviors vary from
a short-time linear stage to a sublinear stage and to a long-time

Figure 1. Coarse-grained model of polymer-grafted nanoparticles,
where the nanoparticle and grafted chains are colored in green and
yellow, respectively.

Figure 2. (a) Time dependence of the mean square displacement ⟨r2⟩
of nanoparticles, where the length NP of the matrix polymers is 40.
The inset shows the model of polymer-grafted nanoparticles. (b) Plots
of the initial and terminal diffusion coefficients D scaled by the
diffusion coefficients for bare nanoparticles as a function of the length
NG of grafted chains.
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linear stage. The slopes υ of the MSDs in logarithmic
coordinates for the three stages are very close to 1.0, 0.5,
and 1.0, which are consistent with those for nonsticky
nanoparticles of intermediate size (ξ < d < a; ξ: correlation
length; d: particle diameter) in entangled polymer melts.32

According to the slopes, three regimes can be distinguished,
that is, initial Brownian diffusion, subdiffusion, and terminal
Brownian diffusion. Moreover, the MSD curves shift down-
ward with increasing the length NG of grafted chains, implying
that the mobility of the nanoparticles is reduced as the grafted
chains become longer because the grafted polymers tend to
suppress the motion of nanoparticles.
Notably, the MSD curves in a short time almost overlap,

which indicates the independence of short-time diffusion on
the grafted polymers. This behavior can be clearly illustrated by
examining the diffusion coefficients D that quantify the motion
of nanoparticles. Figure 2b presents the diffusion coefficients
for short-time diffusion and long-time diffusion. As shown, the
Di for short-time diffusion is nearly unchanged with the length
of the grafted chains, which means that the MSD of PGNs at a
short time can be approximated by that of bare nanoparticles.
At short time scales, the motion of the nanoparticle center is
diffusive, as they “feel” the local viscosity comparable to that of
monomers; the grafted chains and polymers behave the same
because the time scale is smaller than the relaxation time of a
correlation blob with size ξ (≈ 0.7rc, i.e., the average distance
from a bead to the nearest bead). As the time scale increases,
the hydrodynamic diameter of the nanoparticles increases, and
the Dt for terminal diffusion decreases with increasing the
length of grafted chains. The hydrodynamic radius R can then
be evaluated according to the scaling law Dt ∼ R−3.32 For
example, the R for NG = 6 is approximately 2 times the radius
Rb of bare nanoparticles (see Figure S1), and therefore, the
hydrodynamic diameter 2R of the PGNs is comparable to the
tube diameter a (∼4rc). The scaling law R ∼ NG

1/4 suggests that
the grafted chains retard the mobility of the nanoparticle by
enlarging the effective size of the nanoparticles, which supports
the observation of Winey et al.22

T h e s e l f - i n t e rm e d i a t e s c a t t e r i n g f u n c t i o n ,

F t tq iq r r( , ) exp ( ( ) (0))
N j

N
j j

1
0= ∑ [ − ]= , was calculated to

measure the dynamics of the nanoparticles. F(q,t) is plotted in
Figure S2 as a function of time for a series of wave vectors q.
The observed dynamics slow considerably with decreasing q.
We found that the decrease in F(q,t) with time is slower than
the exponential decay in time by fitting the curves in Figure S2
with a stretched exponential exp [−(t/τr(q))β(q)]. The plots of
the relaxation time τr and the stretched exponent β as a
function of q are given in Figure 3a,b, respectively. At small q,
τr scales with q−2 and β approaches one, which implies that the

nanoparticles exhibit Brownian diffusion at large length and
time scales. With increasing q value, τr decreases and β first
decreases and then increases. At large q, the τr values that scale
with q−2 are almost the same for various numbers NG of grafted
chains, which is consistent with the observation of MSD at
short time scales (see Figure 2a). For fixed q, τr increases, and
β decreases as the number NG of grafted chains increases.
In addition to the length of grafted chains, the grafting

density could impact the motion of PGNs. Recently,
Rubinstein et al. have established the relation between the
effective size of the PGN with grafting density.18 The relation
depends on the relative magnitudes of the grafting density (the
number z of grafted chain per PGN), the length NG of grafted
chains, and the length NP of matrix polymers. For most cases,
the radius R of PGNs scales positively with the number z of
grafted chains, that is, R ∼ z1/3 or R ∼ z1/5. Only as z2 < NG <
(NP/z)

2, the radius of PGNs is independent of the number of
grafted chains. As such, the increase in grafting density could
enlarge the effective size of the PGN. Because the effective
viscosity “felt” by the particles at long times is proportional to
the number of correlation blobs in a chain section with a size
comparable to nanoparticle diameter,32 the slowdown of the
nanoparticle motion could be expected as the grafting density
of PGNs increases.
The effect of the length NP of the matrix polymers on the

MSD was also investigated. The result is shown in Figure 4a,

where the ⟨r2⟩ for PGNs with NG = 5 is plotted as a function of
the time interval. For the PGNs in the athermal solvents (NP =
1), the MSD behavior changes from a short-time diffusion
stage to a long-time diffusion stage, and subdiffusion with υ ≈
2/3 appears at the intermediate time scale due to the Zimm
dynamics of PGNs.18 Such a behavior holds for PGNs with
varied lengths NG of grafted chains (see Figure 4b). As NP is
higher than 10, the MSD curves tend to overlap not only at the
short-time stage but also at the long-time stage. The matrix
polymers tend to be entangled under this condition, and
therefore, the motion of nanoparticles is only dependent upon
the entanglement length but is independent of the length of
matrix polymers. As demonstrated by Sirk et al., the
entanglement length is 14 in this DPD simulation,28 close to
the value of NP that appears to have a less marked effect on the
MSD behaviors. The crossover from subdiffusion to long-time
diffusion occurs at ⟨r2⟩ ≈ 4rc

2, which matches the square
hydrodynamic radius of a PGN.

Figure 3. Plots of the (a) relaxation time τr and (b) stretched
exponent β as a function of wave vectors q2.

Figure 4. (a) Time dependence of the mean square displacement ⟨r2⟩
for the PGN systems with various lengths NP of the matrix polymer,
where the length NG of the grafted chain on the nanoparticles is 5.
The horizontal short dashed line (light blue) indicates the MSD
values that separate the subdiffusive regimes from the long-time
diffusion regime. (b) Time dependence of the mean square
displacement ⟨r2⟩ for the PGN solutions with various lengths NG of
the grafted chain, where the length NP of the matrix polymer is 1.
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The MSD only holds information for second-order mo-
ments, and therefore, non-Gaussian parameters, α2(t) =
3⟨Δr4(t)⟩/5⟨Δr2(t)⟩2 − 1, containing fourth-order moments,
are evaluated to gain more information regarding the diffusion
of PGNs.11,33 Generally, α2 = 0 indicates a Gaussian diffusion
behavior. Figure 5 shows the variation in non-Gaussian

parameters as a function of the time interval. The α2(t)
function approaches zero at a short time scale, implying the
Gaussian diffusion of nanoparticle centers. As the time interval
increases, α2(t) deviates from the zero value, which implies
that the diffusion of nanoparticle centers becomes non-
Gaussian. Note that α2(t) at long time scales fluctuates,
which could be associated with the hopping diffusion of
nanoparticles.
One can see from above that the anomalous yet Brownian

diffusion behavior exists as the elapsed time is higher than ca.
1000τ0, that is, the MSD remains linear with time, yet the non-
Gaussian parameter α2(t) deviates from Gaussian forms. To
shed light upon the microscopic origin of this behavior, we
analyzed the displacement probability distribution (DisPD) in
the long-time regime. The DisPD, representing the density
probability of finding a nanoparticle at a distance r from the
initial position after a time interval t, can be obtained by
multiplying the self-part of the von Hove function, G(r,t) =
⟨δ(r − |ri(t) − ri(0)|)⟩, by a factor of 4πr

2. Logarithmic plots of
G(r,t) against the displacement normalized by the cutoff
distance rc are shown in Figure 6a. As shown, G(r,t) tends to

deviate from the unimodal Gaussian distribution. Instead,
multimodal distributions are observed, in particular, on a long
time scale. The G(r,t) curves can be decomposed into several
unimodal Gaussian distributions with different peak positions
(see the dashed lines in Figure 6b). For example, G(r,t)
consists of four Gaussian distributions at t = 40 000τ0 (Figure

6b). The DisPD shows the apparent derivation from the
Gaussian distribution at long time scales (see Figure S3).
The existence of multiple unimodal Gaussian distributions in

each G(r,t) curve implies that there are similar distributions
after every time interval, corresponding to the Gaussian
diffusion of nanoparticles in different local regions. The time
intervals between different distributions are associated with the
hopping effect of PGNs in the entangled polymer melts. To see
such a hopping phenomenon, we recorded the representative
trajectory of a PGN, which is shown in Figure 7. The particles

spend most of the time in diffusing in a local confined region
and sometimes escape from this confined region as a rare
event. This escaping behavior is usually referred to as the
hopping effect. In the present system, the separation of time
scalesthe diffusion of nanoparticles and the relaxation of the
polymers (see Figures 3a and S5)is not so large that the
anomalous yet Brownian diffusion behavior was observed.12

The slow environment changes (polymer relaxation) in space
and time cause the derivation of the DisPD from the Gaussian
distribution.
We found that the bare nanoparticles with Rb ∼ 1.05rc can

even hop in the polymer melt with a ∼ 4rc (see Figure S4).
This is in contrast to the theoretical prediction that hopping is
relevant only for nanoparticles with 2R/a ∼ 1.5−2.34,35
Recently, Lyulin et al. also found that hopping can take
place for the system with very small 2R/a (∼0.1).36 However,
they suggested that the attraction between polymers and
nanoparticles contributes much to the hopping effect for small
nanoparticles. Kalathi et al. also suggested that the hopping
mechanism may play an essential role in the nanoparticle
motion for nanoparticles comparable to the entanglement
length as the nanoparticle−polymer interaction becomes
attractive.37

In contrast, in our system, the polymer and nanoparticles are
athermal relative to each other, and the polymers are slightly
entangled. As such, an important question arises as to whether
the polymer−nanoparticle attraction is necessary for the hop-
like motion of nanoparticles comparable to the entanglement
length or not. Very recently, Composto et al. found that the
nanoparticles are localized within two regions, that is, a narrow
primary localized region due to the nanoparticle−polymer
attraction and a broad secondary localization region due to
network confinement.38 Their work implies that in addition to
the attraction between nanoparticles and polymers, the
network confinement plays a vital role in determining the

Figure 5. Non-Gaussian parameters α2(t) as a function of elapsed
times for the PNGs with various lengths NG of grafted chains, where
the length NP of the matrix polymer is 40.

Figure 6. (a) Displacement distribution function for PGNs with NG =
9. (b) The decomposition of displacement distributions into four
Gaussian distributions (gray dashed lines) at the time intervals of t =
40 000τ0.

Figure 7. Typical motion trajectory of the nanoparticle center of a
PGN with NG = 8. Different colors are assigned to different elapsed
times.
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hopping mechanism of nanoparticles with a size much smaller
than the network mesh size. Note that the nanoparticles are
quantum dots with a hydrodynamic diameter of 10 nm, and
the secondary localization regions are in the size of 150−200
nm. This result could support the existence of hop-like motion
in our system.
To gain insight into the effect of NG on the hopping

mechanism, we calculated the displacement correlation (DC)
function that qualifies the time correlation between the
consecutive displacements of time interval t. The DC function
is given as DC(t) = ⟨δr(t0,t)δr(t0 − t,t)⟩, where δr(t0,t) = r(t0
+ t) − r(t).36,39 Figure 8 shows the log−log plots of the

absolute values of DC functions as a function of the time
interval for PGNs with various values of NG. In a short time
interval, the slope of the curve is ca. 1, yielding the Hurst
exponent H of 0.5 (note that DC(t) ∼ t2H). This indicates a
tendency for the displacement to be uncorrelated in normal
Brownian motion. On intermediate time scales, H is ca. 0.25,
implying that the DC is anticorrelated in the subdiffusive
regime. Beyond this time, the “peak” appears, which may refer
to the typical time when the hopping occurs. As shown, the
first apparent peak shift to high values of time intervals as NG
increases. This implies that more “waiting” time is required for
PGNs with larger NG to escape from polymer cages.
The dynamics of PGNs in polymer melts have been studied

experimentally.19−22,40 Various characterization techniques
such as X-ray photon correlation spectroscopy (XPCS),
Rutherford backscattering spectrometry (RBS), and neutron
spin-echo spectrometry (NSE) were employed in the experi-
ments. Generally, experimental measurements can only provide
information at large length and time scales due to the
limitation of instrument accuracy. Our simulation, however, is
able to provide information spanning a broader range of time
and space scales, which can not only compare with existing
experiment findings but also supplement to the experiments.
Lungova et al. studied the motion of POSS grafted with PEG

immersed in PEG matrices by NSE.16 They found that the
MSD of POSS in entangled PEG crosses over from
subdiffusion following a t0.56 power law to Brownian diffusion
at a long time scale. This finding is similar to our observation
shown in Figure 2a, since the exponent of 0.56 is very close to
the theoretical value of 0.5. Guo et al. investigated the motion
of gold nanoparticles in low-molecular-weight polystyrene
(PS) melt using XPCS, where the gold surface is functionalized
with thiol-terminated PS chains.41 Their results showed that at
high temperatures (323 and 333 K, where Tg is 292 K), the
relaxation time τr decreases with the wave vector q as τr ∼ q−2

when q is small. As q increases, the exponent derivates from
−2. (Note that Guo et al. did not point out this derivation, but

such a derivation does exist, as shown in Figure 3 of their
work.) Such a variation is consistent with our finding that the
τr scales with q−2 at smaller q and a derivation appears as q
increases (see Figure 3a). This experimental finding may
correspond to the simulation cases where q is not very large
because the scaling relation τr ∼ q−2 can recover at large q.
Lungova et al. also observed subdiffusion with the scaling
relation ⟨r2⟩ ∼ t0.77 in an untangled melt.16 The exponent of
0.77 is close to the exponent of 0.8 in the scaling law for the
subdiffusion of nanoparticles in polymers with NP = 1 (see
Figure 4b). We suggest that such a scaling law results from the
coupling between the motion of PGNs and the Zimm
dynamics of the surrounding solvents.
Winey et al. used RBS to measure the diffusion of

poly(methyl methacrylate) (PMMA)-grafted nanoparticles in
unentangled or slightly entangled PMMA melts.22 They found
that the diffusion coefficient of nanoparticles decreases as the
molecular weight of matrix polymers increases. We also
observed similar phenomena as the matrix polymers are not
very long, that is, the nanoparticles move slowly as the length
of the matrix polymers increases (see Figure 4a). However, we
found that the MSD of nanoparticles becomes indistinguish-
able for longer matrix polymers, suggesting that the diffusion of
nanoparticles is almost independent of the matrix polymer
length as the polymer length exceeds the entanglement length.
Because Winey’s work only centers on unentangled and slightly
entangled melts (probably corresponding to the simulation
case where NP is smaller than 20), the independence of the
MSD on the molecular weight of the matrix polymers was not
shown.
In a very recent study, Winey et al. measured the diffusion of

octa(aminophenyl) polyhedral oligomeric silsesquioxane
(OAPS) nanoparticles in well-entangled poly(2-vinylpyridine)
(P2VP).42 They found that the OAPS diffusion coefficients
scale very weak with the molecular weight of P2VP. Their
results suggest that the weak molecular weight dependence is
coupled with polymer dynamics between segment relaxations
and Rouse relaxations due to the weak attraction between
OAPS and P2VP. Since our system is athermal, the
independence of diffusion coefficients on molecular weight
could be expected in our simulation, and we did find that the
MSD becomes indistinguishable as the polymer is longer (see
Figure 4a). This is because, in our systems, the nanoparticle
motion is coupled with the relaxation of polymer segments
(approximately molecular weight independence).
Composto et al. measured the nanoparticle diffusion in gels

by single-particle tracking.38,43 They found that the diffusion of
nanoparticles depends on the mesh sizes that can be tuned by
varying crosslinker density, adding poor solvents, or changing
temperatures. The mobile nanoparticles displayed either
intermittent localization or continual diffusion. The inter-
mittent localization corresponds to the hopping effect in our
simulation, as the nanoparticle escapes from the mesh network
to be localized elsewhere. In addition, they found that van
Hove distributions exhibit non-Gaussian displacements and
can be fit by double Gaussians.38 Such a finding is consistent
with our results shown in Figure 6b. Of particular interest is
that they observed a combination of intermittent localization
and continual diffusion in the gels due to network
heterogeneity. However, such a phenomenon was not observed
in our systems, probably due to the relatively uniform
entangled network (not crosslinked as in their experiment).

Figure 8. Log−log plots of the absolute values of DC functions as a
function of the time interval for PGNs with various values of NG.
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The present work shows that the DPD simulation with
modified segmental repulsive potentials can capture the
hopping effect that is unlikely to obtain in the simulation
based on the bead-spring model.36,37 The hopping effect,
which does not occur in unentangled polymers, is a
representative phenomenon in entangled polymer melts. We
found that the scaling law for nonsticky bare nanoparticles in
entangled polymers can essentially apply to the present PGN
system.32 However, the mobility of PGNs in entangled
polymer melts is dominated by the bare nanoparticle and the
entire PGN at different time scales, as in unentangled polymer
melts.18 The deep understanding of the mobility of PGNs in
polymer melts can help improve the currently available
processing techniques to optimize the properties of advanced
nanocomposite materials.

■ CONCLUSIONS
We studied the dynamic behavior of PGNs in entangled
polymer melts through the DPD simulation coupled with a
modified segment repulsive potential. The results show that
the nanoparticle undergoes three-stage diffusion behavior,
including short-time Gaussian diffusion, intermediate-time
subdiffusion, and long-time non-Gaussian diffusion. The
hopping of nanoparticles in the polymer melts contributes to
long-time non-Gaussian diffusion. The results support the
experimental findings that the grafted polymer chains retard
the motion of the nanoparticle by enlarging its effective size.
We expect that this work could provide valuable information
for controlling nanoparticle dispersion in polymers and for
understanding the rheological or mechanical properties of
polymer nanocomposites.
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