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The linear elasticity of graft copolymer melts in the lamellar phase was examined by the self-consistent

field theory solved in real space. The extensional and shear moduli, which are used to derive the

Young’s modulus, are found to be dependent on the architecture parameters of graft copolymers (the

number of branches and the distribution of junction points). Compared with the shear modulus, the

extensional modulus makes a greater contribution to the Young’s modulus. The graft copolymers with

the larger branch number exhibit the better mechanical properties. For the physical origin of the

improvement of mechanical properties, the contribution of internal energy is the main drive, while the

contribution of entropy to the moduli is negative or neglected. The distribution of junction points was

also found to play a role in determining the elastic properties. These findings gained through the

theoretical calculations may provide useful information for designing graft copolymers with enhanced

properties.
Introduction

Block copolymers can spontaneously self-assemble into a variety

of ordered microstructures. The elasticity of block copolymer

microstructures is of great interest in the development of mate-

rials, such as thermoplastic elastomers and pressure-sensitive

adhesives. Therefore, the development of theoretical methods for

predicting the macroscopic mechanical properties of block

copolymers from knowledge of the microscopic structure is

crucial.1,2 The need for such predictions becomes increasingly

important as new synthesis methods are now available that can

produce many new exciting architectures.

The molecular architecture of polymers has been long recog-

nized as an important factor for tailoring the materials’ proper-

ties. Changing the molecular architecture from simple linear

diblock copolymers to graft copolymers exerts a marked effect

on the mechanical properties of the copolymers, which has

sparked considerable interest and is being extensively investi-

gated.3–9 For example, Kennedy et al. demonstrated that the

graft copolymer molecular architecture can be used for

improving the mechanical properties of the thermoplastic elas-

tomer (TPE).4,5 The graft copolymers comprising a rubbery

backbone and glassy branches are much suitable for TPEs.

Recently, Zhu et al. synthesized a series of graft copolymers with

polyisoprene (PI) as backbone and polystyrene (PS) as branches,

which offered new opportunities to study the effect of molecular

architecture on the morphology and in turn on the mechanical

properties.8,9 They found that the graft copolymer materials

show significantly higher elongation than the commercial mate-

rials when comparable stress is achieved at a break. It was also
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found that the Young’s modulus becomes larger with an

increasing number of branches. Therefore, the concept of using

graft copolymers as TPEs not only reveals a new type of mate-

rials with an exceptional property profile, but also indicates that

the material properties can be tuned by varying the molecular

architecture. However, the understanding of the better mechan-

ical properties of the graft copolymers is still lacking. Inspired by

these findings, we present a first theoretical investigation on the

elastic properties of graft copolymers.

So far, a variety of theoretical tools have been used to predict

the elastic properties of materials.10–14 Self-consistent field theory

(SCFT) has been widely used to investigate the thermodynamics

properties of polymer systems.15–20 One prominent characteristic

of this theory is that it allows us to incorporate many specific

features of polymer models, such as molecular architecture and

composition gradient,21–23 stiffness of chain,24,25 and presence of

nanoparticles.26–28 Recently, Tyler and Morse used the SCFT in

reciprocal space to examine the linear elasticity of the body-

centered cubic and gyroid phases of block copolymers.29 They

found that the reduced elastic moduli are universal functions of

interaction parameters, volume fraction, and block asymmetry.

In addition, they compared the calculated elastic moduli with the

existing experimental results. Subsequently, Thompson et al.

presented a real-space SCFT method for calculating the elastic

moduli of multiblock copolymers and block copolymer/

nanoparticle composites30,31 They not only predicted the effects

of the number of blocks of multiblock copolymers and adding

nanoparticles into the copolymers on the elastic properties, but

also explained the physical origins of the observed effects. Liang

and co-workers used the same method to study the effects of

polydispersity and architecture of triblock copolymers on the

elastic properties.32,33 Maniadis et al. incorporated the elastic

stress and strain fields into the SCFT.34 They showed that the

local stress is reduced at interface, but slightly enhanced in the

vicinity of the interface.
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These SCFT results are all found to be in good qualitative

agreement with the experimental findings, indicating that the

approach based on SCFT is a powerful methodology to deduce

the macroscopic properties of a material from the knowledge of

microscopic structure. It should be pointed out that all these

SCFT calculations were performed in melt state. SCFT has

difficulty in predicting the elastic properties of a non-melt system

due to its own shortcoming. However, the results obtained

from melt state could be applicable to the situation in non-melt

system.

In our previous study, we adopted the SCFT to investigate

the morphology and phase behavior of graft copolymers.35,36 In

the simplest diblock copolymer system, there are two thermo-

dynamic variables which determine the phase behavior, which

are the composition and the parameter cN (c is the Flory–

Huggins parameter and N is the polymerization degree). With

respect to the graft copolymers, there exist another two archi-

tecture parameters affecting the self-assembly behavior of

copolymers. The two parameters are the number of branches

(m) and the distribution of junction points (t). After incorpo-

rating these two parameters into the SCFT framework, we

examined the phase behavior of graft copolymers. It was found

that the morphology transition between the lamellar and

cylindrical phases can be triggered by tailoring the m and t

parameters.35 In addition, the molecular architecture also has an

important impact on the self-assembly behavior of graft

copolymers in dilute solution.36

In present work, we elucidated the effect of architecture

parameters on the elastic properties of graft copolymers in melt

state. The extensional and shear moduli were calculated by

SCFT methodology for the graft copolymers in lamellar phase.

The physical origins of the architecture effects on the elastic

moduli were also investigated. The moduli can be tailored by

changing the architectural parameters of graft copolymers and

the internal energy contribution plays a main role in deter-

mining the moduli. We expect that the present study may offer

some useful information for designing graft copolymers with

enhanced properties.
Theory

A schematic representation of the molecular architecture of the

graft copolymer studied in the present work is shown in Fig. 1.m

flexible homopolymer B grafts are spaced along the flexible

homopolymer A backbone. The degrees of polymerization of the

A backbone and per B graft are NA and NB, respectively.

The statistical segment length ofA- and B-type segments is b. The

volume fraction ofA-type segment in the system is denoted by fA,

and that of B-type segment is fB ¼ 1 � fA. In present model, the

position of ith graft is given by ti ¼ t1 + (i � 1)(1 � 2t1)/(m � 1).

This means that the grafts are equally spaced along the backbone

parametrized from 0 to 1.
Fig. 1 The molecular architecture of the graft copolymer with m ¼ 4.

Flexible homopolymer B grafts are spaced along the flexible homopol-

ymer A backbone. The ith graft is located at ti ¼ t1 + (i � 1)(1 � 2t1)/3.

174 | Soft Matter, 2009, 5, 173–181
Next, we introduce the linear elasticity model for graft

copolymers in the lamellar phase. The variation of the total free

energy of a crystal for small deformations is37

Fel ¼ ½uijKijklukl (1)

where Kijkl is a tensor of rank four, called the elastic modulus

tensor (i, j, k, l ¼ 1, 2 or 3), and uij is the strain tensor. The elastic

modulus tensor for a crystal in termsof the strain tensor is givenby

Kijkl ¼
v2Fel

vuij vukl

����
u¼0

(2)

where u ¼ 0 denotes a strain tensor with zero components. The

tensor Kijkl can be unchanged when the dummy indices i and j, or

k and l, and the pairs ij and kl are interchanged. The number of

different components of a rank-four tensor is reduced to 21. If

the crystal possesses symmetry, there exist relations between the

various components of the tensor Kijkl. For a tetragonal

symmetry with a preferred z axis, Kijkl contains just six inde-

pendent non-zero components. Under the transformation

between x and y axis directions, the general expression for the

elastic free energy in the tetragonal system is given by37

Fel¼ ½Kxxxx(uxx
2 + uyy

2) + ½Kzzzzuzz
2 + Kxxzz(uxxuzz + uyyuzz)

+ Kxxyyuxxuyy + 2Kxyxyuxy
2 + 2Kyzyz(uxz

2 + uyz
2) (3)

Another notation used for Kijkl is the Voigt notation Kmn with m

and n taking values from 1 to 6 in correspondence with xx, yy, zz,

yz, zx, xy. The above equation can be rewritten as

Fel ¼ ½K11(uxx
2 + uyy

2) + ½K33uzz
2 + K13(uxxuzz + uyyuzz)

+ K12uxxuyy + 2K66uxy
2 + 2K44(uxz

2 + uyz
2) (4)

For the lamellar structure perpendicular to the z axis, deforma-

tions along the x or y axis directions (parallel to the lamellar

structure) have no effect on the free energy of the system. By

extending/compressing along the z axis (see Fig. 2a), the uxx and

uyy components should be zero. The uzz component remains

non-zero and it has a value of z/l, where z is the absolute

deformation, and l is the length of material. The equation for the

elastic free energy, eqn (4), can be written as Fel ¼ ½K33uzz
2,

where uzz ¼ z/l is the relative deformation. If the object

undergoes a shear along a plane perpendicular to the y axis (see

Fig. 2b), the modulus K44 is obtained. The only non-zero strain

tensor compound is uyz ¼ z/2l. Therefore, the elasticity free

energy for a lamellar structure reduces to30

Fel ¼ ½[K33uzz
2 + 4K44(uyz

2 + uxz
2)] (5)

The free energy per chain for graft copolymer melts in context of

SCFT can be written as

F

nkBT
¼ �ln

�
QG

V

�
þ 1

V

ð
dr½cABNG4AðrÞ4BðrÞ � uAðrÞ4AðrÞ

� uBðrÞ4BðrÞ � xðrÞð1� 4AðrÞ � 4BðrÞÞ�
(6)

where kB is Boltzmann’s constant, T is the temperature, n is the

number of graft copolymers in system, and V is the volume of

system. cAB and NG(¼ NA + mNB) refer to the Flory–Huggins
This journal is ª The Royal Society of Chemistry 2009
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Fig. 2 A schematic of a material undergoing extension (a) and shearing

(b). q is the amount of shear. The amount of deformation is exaggerated.
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interaction parameter and the total number of segments in a graft

copolymer, respectively. 4A(r) and 4B(r) are respectively the local

volume fractions of A and B segments, while the conjugated

fields are uA(r) and uB(r). The incompressibility (4A(r) + 4B(r) ¼
1) is introduced by a Lagrangian multiplier x(r). QG is the single-

chain partition function, which can be computed according to

QG ¼
Ð
drqA(r,1). qA(r,s) is the backbone propagator, providing

the probability that the end of the section chain of length sNA is

constrained at r. The backbone propagator is divided into m + 1

segments,

qA(r,s) ¼ qA
(j)(r,s)for tj#s<tj+1

j ¼ 0,1,/,mt0 h 0, tm+1 h 1 (7)

where each segment satisfies the modified diffusion equation:

NG

NA

vq
ðjÞ
A ðr; sÞ
vs

¼ NGb
2

6
V2q

ðjÞ
A ðr; sÞ � uAðrÞqðjÞA ðr; sÞ (8)

and is subject to the following initial conditions:

qA
(j)(r,tj) ¼ qA

(j�1)(r,tj) qB(r,1) j ¼ 1,2,/,m qA
(0) (r,0) ¼ 1 (9)

Here, qB(r,s) is a propagator for B graft that satisfies the

following modified diffusion equation:

NG

NB

vqBðr; sÞ
vs

¼ NGb
2

6
V2qBðr; sÞ � uBðrÞ qBðr; sÞ 0#s#1 (10)

and is subject to the initial condition qB(r,0) ¼ 1 for the free end

of the graft at s¼ 0.We also define a back propagator of the jth B

chain, qBj
+ (r,s). It satisfies the same diffusion equation as qB(r,s)

and starts on the end of the B chain tethered to the backbone. It

is therefore subject to the initial condition

qþBjðr; 0Þ ¼
q
ðjÞ
A

�
r; tj

�
q
ðmþ1�jÞ
A

�
r; 1� tj

�
q2Bðr; 1Þ

(11)

In terms of these propagators, the densities are given by

4AðrÞ ¼
Xmþ1

i¼1

4i
AðrÞ ¼

VfA

QG

Xmþ1

i¼1

ð ti

ti�1

ds qAðr; sÞ qAðr; 1� sÞ (12)

4BðrÞ ¼
VfB

mQG

Xm
j¼1

ð 1

0

dsqBðr; sÞ qþBjðr; 1� sÞ (13)

where 4i
A(r) is the density of backbone blocks between ti-1 and ti.

More details about the SCFT for graft copolymers can be found

in our previous studies.35,36

The linear elastic moduli can be obtained by the SCFT energy

of graft copolymer melts. We can numerically calculate the
This journal is ª The Royal Society of Chemistry 2009
equilibrium free energy of graft copolymers using eqn (6). The

system is slightly deformed from the equilibrium structures by

varying the size or shape of the simulation box (Fig. 2). The free

energy of the deformed lamellar structure is recalculated by

self-consistent field theory. We adopt the real-space algorithm

for SCFT introduced by Drolet and coworkers,20,38 which

searches for the equilibrium or metastable states. The relation of

free energy versus the relative deformation is constructed. The

elastic moduli can be numerically evaluated by taking the second

derivative of the SCFT energy with respect to the relative

deformation.

To yield the extensional and shear moduli, we use two ways

to deform the system: an extension/compression, which yields

K33, and a simple shear, which yields K44. With respect to

extension/compression, the free energy of the lamellar phase in

the equilibrium box size is evaluated first. Then the box is

extended/compressed by a small change in a direction perpen-

dicular to the lamella (Fig. 2a). Correspondingly, the free energy

of the deformed lamellar structure is recalculated each time. In

our simulation for extension/compression, the free energy is

calculated in a rectilinear grid of evaluation points. For the

shearing (Fig. 2b), however, a nonorthogonal coordinate system

is used to calculate the free energy. The coordinate trans-

formation is performed: x0 ¼ x, y0 ¼ y/sinq, z0 ¼ z � ycotq, where

the symbol (0) denotes the nonorthogonal coordinate, and q gives

the amount of shear. As a result, all of the integrals must be

subject to a factor of Jacobian determinant sinq. For the free

energy of SCFT, however, all the integrals are normalized by the

volume of the system, which equals to Vsinq in the deformation

system. The only change in the numerical calculation is

the nonorthogonal Laplacian operator in the diffusion equation.

For the solution of the diffusion equation, we employ the

Baker–Hausdorff operator splitting formula,39,40 which is based

on the Fourier transformation between real space and reciprocal

space. The Laplacian operator in reciprocal space can be

written as

V0 ¼ �k02
x � 1

sin2
q

�
k02
y þ k02

z � 2k0
y k

0
z cosq

�
(14)

where k0 is the wave vector. The diffusion equation for a shear

system can be calculated by performing a standard Fourier

transformation, using the Laplacian operator for the shear

system given by eqn (14), and implementing a standard inverse

Fourier transformation.41

We can apply this method to compute the elastic moduli for

lamella formed by the graft copolymers with different architec-

tural parameters, such as the distribution of junction points and

the number of branches. In order to understand the physical

origin of the differences in the mechanical properties for the graft

copolymers with various molecular architectures, the free energy

of SCFT is separated into physically relevant contributions.

Here, the free energy of graft copolymers (in units of kBT) can be

decomposed as42

F ¼ U � T S ¼
Xmþ1

i¼1

Ui � TðSE þ SCÞ (15)

Here, U and S are the internal energy and entropy, respectively.

Ui is the internal energy contributed from blocks between ti�1
Soft Matter, 2009, 5, 173–181 | 175
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Fig. 3 The change in free energy (in units of kBT) between the unde-

formed and deformed structures upon extension/compression (a) and

shearing (b) for graft copolymers with various values ofm at t1 ¼ 0.10. In

part (a), the negative and positive values of deformation are compression

and extension, respectively.
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and ti. SE is the entropy of the end point of the backbone (s ¼ 1).

SC is the conformational entropy of a molecule. Using the

standard Gaussian model and SCFT, the corresponding

components of the free energy can be written as

U ¼ cABNG

V

ð
dr4AðrÞ4BðrÞ ¼

Xmþ1

i¼1

Ui

¼ cABNG

V

Xmþ1

i¼1

ð
dr4

ðiÞ
A ðrÞ4BðrÞ (16)

�T SE ¼ 1

V

ð
dr rEðrÞ ln rEðrÞ (17)

�TSC ¼ � 1

V

ð
dr ½rEðrÞln qAðr; 1Þ þ uAðrÞ4AðrÞ þ uBðrÞ4BðrÞ�

(18)

where rE(r) ¼ VqA(r,1)/QG.

The values of elastic moduli K33 and K44 can be obtained by

taking the second derivative of the SCFT energy with respect to

the relative deformation 3. The calculation can be carried out as

v2F

v32
¼ v2U

v32
þ v2ð�TSÞ

v32
¼

Xmþ1

i¼1

v2Ui

v32
þ v2ð�TSEÞ

v32
þ v2ð�TSCÞ

v32

(19)

The modulus K33 can be decomposed into the components

K33 ¼ KU
33 þ KS

33 ¼
Xmþ1

i¼1

KUi

33 þ KSE

33 þ KSC
33 (20)

where the components KU
33, KS

33, KUi

33, KSE

33, and KSC

33 are

identified with the derivative in eqn (19). Similarly, the decom-

position is suitable for K44.

To compare with the existing experimental results, a standard

definition of the Young’s modulus, E, in terms of the extensional

and shear moduli, is used and it is given by37

E ¼ K33ðK33 þ 6K44Þ
12ðK33 þ K44Þ

(21)

SCFT calculation results

In the present work, we investigate the effect of molecular

architecture on the elastic properties of graft copolymers in

a lamellar phase. Two import parameters characterizing the

molecular architecture of graft copolymers are included in the

model: the number of branches (m) and the position of first

junction point (t1). The interaction strength of the average

constituting single graft copolymer h ¼ cABNG/m is taken to be

a value of 20.0,43 sufficient to produce microphase separation in

the bulk. We restrict attention to the graft copolymers with the

backbone volume fraction fA at 0.45, where the lamellar structure

is formed.

1. Effect of the branch number

Fig. 3 shows the changes in free energy upon deformation for the

graft copolymers with various branch numbers at t1 ¼ 0.10. The
176 | Soft Matter, 2009, 5, 173–181
free energies of systems have been zeroed at the equilibrium state,

which corresponds to the relative deformation 3 ¼ 0. To guar-

antee the validity of linear elastic theory in small deformation

range, the elastic response is within 15% strain. Fig. 3(a) and (b)

present the cases of the extension/compression and shear defor-

mations, respectively. The change in free energy upon deforma-

tion becomes marked as the branch number increases. In

comparison with the shear deformation, the variation in free

energy upon extension/compression deformation is much larger.

As shown in Fig. 3, the parabolic character of these curves

indicates that the linear elastic theory can be applicable.30,37 The

polynomials are used to fit these curves, and K33 and K44 can be

obtained by taking the second derivative of the free energy

change with respect to the relative deformation.

The elastic moduli K33 and K44 as a function of the number of

branches for the graft copolymers with the position of first

junction point t1 ¼ 0.10, 0.20, and 0.30 are shown in Fig. 4(a).

Increasing the number of branches gives rise to the linear increase

in extensional modulus (K33). The shear modulus K44 versus m

has a raise over the range 2 # m # 5. It is also noted that the

effect of t1 on K33 and K44 becomes marked when m is greater.

The shear modulus is smaller in comparison with the extensional

modulus. Therefore, the Young’s modulus E (calculated using

eqn 21) mainly depends on the contribution of extensional

modulus K33. A plot of E versusm for graft copolymers with t1¼
0.10, 0.20, and 0.30 is shown in Fig. 4(b). The data is plotted on

a semilog scale. As can be seen, the graft copolymers with larger

m and smaller t1 have larger Young’s modulus.

To understand the origin of the increase in the elastic moduli

with increasing m, we decompose the K33 and K44 moduli into

two parts according to eqn (16)–(18). One is the contribution

from the internal energy (U), and the other arises from the

entropy (-TS). For example, Fig. 5 shows the internal energy
This journal is ª The Royal Society of Chemistry 2009
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Table 1 Components of the dimensionless K33 and K44 moduli for graft
copolymers with various values of branch number at t1 ¼ 0.10

KU
33 KS

33 K33 KU
44 KS

44 K44

m ¼ 2 2.357 0.0214 2.378 2.051 �1.959 0.0920
m ¼ 3 4.217 �0.289 3.928 3.021 �2.819 0.202
m ¼ 4 6.835 �0.831 6.004 4.099 �3.585 0.514
m ¼ 5 9.070 �1.459 7.611 6.582 �4.326 2.255

Fig. 4 The dimensionless elastic moduli K33, K44, and E as a function of

the number of branches for graft copolymerswith t1¼ 0.10, 0.20, and 0.30.
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change contributions to the total free energy change for exten-

sion/compression and shear of the graft copolymers with various

values of branch number at t1 ¼ 0.10. The contribution of

internal energy change to the total free energy change of the graft

copolymers with the larger branch number appears to be greater

upon increasing the relative distortion. Unlike the total free

energy, the curves of internal energy components upon extension
Fig. 5 The internal energy change (in units of kBT) versus the relative

deformation for extension/compression (a) and shear (b) of graft copol-

ymers with various values of branch number at t1 ¼ 0.10.

This journal is ª The Royal Society of Chemistry 2009
deformation do not display the parabolic character but have the

large first derivative (as shown in Fig. 5a). However, according to

eqn 19, the curvature of the components can still be evaluated

from the second derivative of the respective energy components

with respect to the relative deformation 3.

Taking the second derivative of internal energy and entropy

changes with respect to the relative deformation, we obtain the

moduli contributed from the internal energy and entropy for

graft copolymers with various values of m, which are listed in

Table 1. K33 is the total extensional modulus, and is the sum of

KU
33 and KS

33, which are the moduli from the contributions of

internal energy and entropy, respectively. K44 is the total shear

modulus, and is the sum of KU
44 and KS

44, which are the moduli

from contributions of internal energy and entropy, respectively.

As can be seen, the internal energy contribution (KU
33 and KU

44) is

mainly responsible for the total elastic moduli. The remarkable

increase in moduli (KU
33 and KU

44) from the internal energy

contributes mainly to the increase in the total moduli with

increasing m. In contrast, the contribution of entropy (KS
33and

KS
44) to the total elastic moduli is negative or negligible.

We can further understand the elastic behavior by considering

the features of graft copolymers. The width of lamellar interface

remains practically unchanged when the deformations are small.

Meanwhile, few A segments are migrated into the energetically

unfavorable B region and vice versa. Thus, the absolute amount

of energetically unfavorable AB contacts almost remains the

same in the undeformed and deformed structures. The defor-

mations paralleled to the lamellar structure do not change the

periodicity of the structure and the free energy of the system. The

lamellar structure can be considered as one-dimensional. As

a result, the internal energy U upon extension/compression can

be written as31

U ¼ a m

d*ð1þ 3Þ (22)

where a is a constant, 3 is the relative deformation, and d* is the

thickness of the equilibrium lamella. Taking the second deriva-

tive of internal energy with respect to the relative deformation,

we obtain the value of KU
33, which is given by

KU
33 ¼

v2U

v32

����
3¼0

¼ 2a m

d*
(23)

The equation indicates that the internal energy contribution to

K33 is proportional to the number of branches, but inversely

proportional to the domain spacing. As the number of branches

increases, while the volume fraction of graft chains is kept the

same, the length of single branch chain has a decrease. In addi-

tion, the length of backbone blocks between the neighbor junc-

tions becomes shorter with increasing the branch number at fixed
Soft Matter, 2009, 5, 173–181 | 177
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Fig. 6 The internal energy change Ui (in units of kBT) for blocks

between ti�1 and tiversus the relative deformation for extension/
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t1. As a result, increasing the number of branches gives rise to the

decrease in the lamellar thickness d*.35 By combing this analysis

with eqn (23), it can be concluded that the modulus from the

contribution of internal energy is greater for the graft copolymers

with larger branch number.

Similarly, the internal energy upon shearing is31

U ¼ am

V sinq
¼ am

V

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 32

p
(24)

where q is a measure of the amount of shear and 3 ¼ cotq

characterizes the relative deformation. The modulus from

contribution of internal energy can be obtained by taking the

second derivative of free energy with respect to 3 and is given by

KU
44 ¼

v2U

v32

����
3¼0

¼ a m

V
(25)

As the equilibrium volume V is compressed upon increasing the

m, the internal energy contribution to the modulus becomes

greater according to eqn (25). However, the effect is depressed by

the entropy contribution to the modulus, which becomes a larger

negative value at larger m (as shown in Table 1). As a conse-

quence, the contribution of shear modulus to Young’s modulus

is smaller than that of extensional modulus.
compression (a) and shear (b) of graft copolymers atm¼ 3 and t1 ¼ 0.15.
2. Effect of the junction point distribution

Dependence of the moduli of graft copolymers on the junction

point distribution is further examined. Table 2 shows the elastic

properties of graft copolymers with various values of t1 atm¼ 3.

The contribution of K33 to the Young’s modulus is greater than

that of K44. As t1 value increases, for K33, K44, and E, there is

a raise at the smaller t1 region, a drop at the intermediate t1
region, and a raise at the larger t1 region.

To further understand the effect of the t1 on the elastic prop-

erties, we decompose themoduliKU
33 andK

U
44 into the contribution

from the internal energy per block according to eqn (15), because

the total moduli are mainly determined by the contribution of

internal energy. Fig. 6 displays the contributions of internal

energy changeUi from blocks between ti�1 and ti to the total free

energy change as a function of the relative deformation upon the

extension/compression and shear of the graft copolymers with

m¼ 3 and t1¼ 0.15. The curves ofU1 andU2 are similar toU4 and

U3, respectively, indicating that the modulus KU1
33 (KU2

33) is

almost identical to KU4
33 (K

U3
33). It is ascribed to the fact that the
Table 2 The dimensionless elastic moduli K33, K44, and E for graft
copolymers with various values of t1 at m ¼ 3

K33 K44 E

t1 ¼ 0.02 3.704 0.0925 0.346
t1 ¼ 0.05 3.831 0.149 0.379
t1 ¼ 0.10 3.928 0.202 0.408
t1 ¼ 0.15 3.755 0.188 0.388
t1 ¼ 0.20 3.687 0.0700 0.336
t1 ¼ 0.25 3.608 0.0767 0.332
t1 ¼ 0.30 3.360 0.0850 0.315
t1 ¼ 0.35 3.215 0.0890 0.304
t1 ¼ 0.40 3.313 0.134 0.329
t1 ¼ 0.42 3.362 0.156 0.342

178 | Soft Matter, 2009, 5, 173–181
architecture of graft copolymers is symmetric and the lengths of

two free end blocks are equal. For the graft copolymers with the

architecture parameters m ¼ 3 and t1 ¼ 0.15, the lengths of free

end blocks and the inner blocks are 0.15 and 0.35, respectively.

The contributions of internal energyU2 andU3 to total free energy

appear to be greater in comparison with those of U1 and U4.

The contribution of internal energy change U1 as a function of

the relative deformation upon extensional/compression and
Fig. 7 The internal energy changeU1 (in units of kBT) for block between

t0 and t1 versus the relative deformation for the extension/compression

(a) and shear (b) of graft copolymers with various values of t1 at m¼ 3.

This journal is ª The Royal Society of Chemistry 2009
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shear of graft copolymers with various values of t1 at m ¼ 3 is

illustrated in Fig. 7. For the graft copolymers with t1 ¼ 0.05,

corresponding to the shorter free end blocks, the contribution of

internal energy change U1 to the total free energy change is

smaller. As the length of free end blocks gradually increases, the

contribution of internal energy U1 to the total free energy

becomes marked. In the case of t1 ¼ 0.40, corresponding to the

longer free end blocks, the total free energy arises almost from

the internal energy for the free end blocks.

Table 3 shows the moduli from the individual contribution of

the different blocks of backbone obtained by analyzing the

internal energyUi. The moduli contributed from entropy are also

listed. In the table, KUi

33 are the extensional moduli from the

contribution of internal energy for blocks between ti�1 and ti.

KUE

33 and KUC

33 are the extensional moduli from the contribu-

tions of the entropy of the backbone end point and conforma-

tion, respectively. KUi

44 are the shear moduli from the

contribution of internal energy for blocks between ti�1 and ti.

KUE

44 and KUC

44 are the shear moduli from the contributions of

entropy of backbone end point and conformation, respectively.

When t1 is smaller, corresponding to the longer inner ‘‘chain’’,

the total value of KU
33 (K

U
44) arises mainly from the contributions

from the inner blocks KU2

33 and KU3

33(K
U2

44and KU3

44). With an

increase in t1, the length of free end blocks can be comparable

with that of the inner blocks. The difference in moduli contrib-

uted from the free end blocks and inner blocks becomes small.

When t1 is larger, corresponds to the longer free end ‘‘chain’’, the

contribution of free end blocks to the total modulus becomes

dominant and that of inner blocks becomes negative. Therefore,

the moduli from the contributions of internal energy Ui depend

on the length of blocks between ti�1 and ti. In other words, the

modulus KU
33 (K

U
44) from the contribution of total internal energy

is associated with the total length of backbone. When the junc-

tions are redistributed (t1 is changed), the lengths of free end

blocks and inner blocks change, but the total length of backbone

is kept invariable. Thus, the moduli from the contribution of

total internal energy do not have a significant change as t1 varies
Table 3 Components of dimensionless K33 (a) and K44 (b) for graft copolym

(a) KU1

33 KU2

33 KU3

33

t1 ¼ 0.05 0.0391 1.914 1.907
t1 ¼ 0.10 0.212 1.848 1.833
t1 ¼ 0.15 0.576 1.773 1.764
t1 ¼ 0.20 0.896 1.492 1.498
t1 ¼ 0.25 1.257 1.142 1.134
t1 ¼ 0.30 1.514 0.689 0.683
t1 ¼ 0.35 1.628 0.355 0.332
t1 ¼ 0.40 1.866 �0.118 �0.0956

(b) KU1

44 KU2

44 KU3

44

t1 ¼ 0.05 �0.0668 1.495 1.442
t1 ¼ 0.10 0.0663 1.441 1.408
t1 ¼ 0.15 0.334 1.220 1.202
t1 ¼ 0.20 0.716 0.884 0.879
t1 ¼ 0.25 1.070 0.512 0.518
t1 ¼ 0.30 1.400 0.170 0.180
t1 ¼ 0.35 1.731 �0.146 �0.122
t1 ¼ 0.40 1.914 �0.296 �0.284

This journal is ª The Royal Society of Chemistry 2009
from 0 to 0.50. Under this condition, the contribution of entropy

to the total modulus plays a role in tuning the mechanical

properties of graft copolymers. As shown in Table 3, the

modulus from the contribution of entropy at smaller value of t1
is smaller in comparison with those at intermediate or larger

values of t1(the entropy contribution is negative). This results in

the larger value of Young’s modulus when t1 is smaller.
Discussion

In our theoretical calculations, we found that the graft copoly-

mers with the larger branch number have the better elastic

properties (as shown in Fig. 4). Some experimental evidences are

available in the literature, supporting such theoretical predica-

tions of the mechanical properties of graft copolymers. Peiffer

and Rabeony investigated the structure-property relationships of

graft copolymers based on the poly(ethyl acrylate) as backbone

and polystyrene as grafts.6 They found that an increase in branch

number leads to enhanced mechanical properties. Recently, Gido

and co-workers synthesized a series of well-defined graft copol-

ymers with various molecular architectures.7–9 They studied the

effects of molecular architectures on the mechanical properties

and morphologies of the graft copolymers. A linear increase in

the elastic moduli with increasing branch number was found in

their studies. In our theoretical predictions, the tensile modulus

has an increase with increasing the number of branches (as

shown in Fig. 4), which are qualitatively consistent with the

findings of experiments. However, the dependence of the

Young’s modulus on the branch number is non-linear in our

calculations. Such discrepancies between our results and exper-

imental data can be attributed to the simple SCFT model, which

has not considered the fluctuation effects, actual sizes of the

monomers, and polydispersity etc.44–46 In addition, we should

emphasize that the calculations were performed in the melt state

under small deformation. As for the non-melt system, the elastic

properties cannot be predicted directly by the method combined

by SCFT and linear elasticity model. But extending the results
ers with various values of t1 at m ¼ 3

KU4

33 KSE

33 KSC

33 K33

0.0709 �0.0612 �0.0390 3.831
0.324 �0.163 �0.126 3.928
0.690 �0.309 �0.739 3.755
0.898 �0.302 �0.795 3.687
1.179 �0.278 �0.826 3.608
1.540 �0.301 �0.765 3.360
1.637 �0.346 �0.391 3.215
1.938 �0.348 0.0703 3.313

KU4

44 KUE

44 KUC

44 K44

�0.00916 �0.178 �2.534 0.149
0.106 �0.116 �2.703 0.202
0.375 �0.230 �2.712 0.188
0.710 �0.371 �2.748 0.0700
1.098 �0.491 �2.630 0.0767
1.450 �0.579 �2.536 0.0850
1.739 �0.638 �2.475 0.0890
1.921 �0.714 �2.407 0.134
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obtained from the melt state to non-melt situation would be

a fairly ‘‘hand-waving’’ argument.

In our previous study, we examined the fraction of bridged

conformation (the neighbor junctions are anchored at different

domains) and the number of bridged chains per unit area, which

are supposed to be associated with the mechanical properties of

graft copolymers,35 as functions of the number of branches and

the distribution of junction points. The fraction of bridged

conformation shows a tendency of decrease with increasing t1
andm. The number of bridged chains per unit area increases with

increasing m. However, according to the present study, the

bridged and looped conformations are not the primary factor

determining the elastic moduli of graft copolymers with smaller

value of t1, as the system is dependent upon the quasi-equilib-

rium melt distortions in the linear regime. Gido and co-workers

have reached a similar conclusion through analyzing the phase

behavior of the graft copolymers.47–50 They established a consti-

tuting block copolymer hypothesis to explain the phase behavior

of graft copolymers. The constituting block copolymer is the

single graft copolymer by snipping the midpoint of the looped

and bridged ‘‘chain’’. The phase behavior of graft copolymers has

analogy to that of the constituting block copolymers. For graft

copolymers, the bridged and looped backbone blocks are quite

relaxed away from the interface. In addition, the looped and

bridged conformations are not under tension upon small

distortion. Therefore, the conformations have a weak influence

on the elastic moduli at small deformations close to the equi-

librium state. The internal energy contributes mainly to the

elastic moduli. We should note that the bridged conformation

could play a significant role in determining the mechanical

properties at fracture when the bridged blocks must be pulled out

of the microstructures.

The graft copolymers have two free end blocks. The connec-

tivity between the chain conformation and the mechanical

properties does not consider the contribution of free end

‘‘chain’’.51 As t1 approaches 0.5, the length of inner blocks

becomes short and the fraction of bridged conformation has

a sharp decrease.35 The contribution of free end blocks cannot be

neglected. Under this condition, the models, which utilize the

fraction of bridged conformation to predict the mechanical

properties of copolymer melts, are not suited to represent the real

situation.51 In our calculations, the moduli (KU1
33 andKU4

33) from

the contributions of free end blocks are associated with their

lengths (as shown in Table 3). The total moduli of graft copol-

ymers with larger value of t1 depend mainly on the free end

blocks. This is consistent with the real situation.

As for the diblock copolymers, the mechanical properties

cannot be tailored by other parameters, when the thermody-

namics variables (cN and fA) are fixed.
29 In comparison with the

block copolymers, two parameters (m and t1) have distinct

impact on the mechanical properties of graft copolymers. As

shown in the present work, an increase in the number of branches

can result in an improvement of the elastic moduli for graft

copolymer melts. Meanwhile, changing the distribution of

junction points can also tune the mechanical properties of graft

copolymers. The SCFT calculation results are qualitatively

consistent with the findings of experiments and may provide

useful information for designing the graft copolymers with

enhanced properties. However, the approach combined with
180 | Soft Matter, 2009, 5, 173–181
SCFT and linear elasticity theory does not yield the direct

relation of the free energy in deformation system to the experi-

mentally observed moduli due to the lack of fields describing the

viscoelasticity of polymer fluids. Thus, there is certain room

for further improvement of self-consistent field theory. For

example, the elastic stress and strain fields, which can handle the

entanglement phenomenon in fluids, might be incorporated into

the theory framework.52 Under this condition, more information

regarding the relation between the structure and property of

the graft copolymers may be obtained through the SCFT

calculations.

Conclusions

We adopted the real-space self-consistent field theory to calculate

the linear elastic moduli of graft copolymer melts in the lamellar

phase by quasi-statically deforming the structures. The exten-

sional and shear moduli are examined as functions of the

architecture parameters of graft copolymers (the number of

branches and the distributions of junction points). The value of

Young’s modulus depends mainly on the extensional modulus,

and the contribution from the shearing modulus to Young’s

modulus is small or negligible. Increasing the number of

branches gives rise to the enhancement in the mechanical prop-

erties. The modulus can be decomposed into the contributions

from the internal energy and entropy portions. The values of

extensional and shear moduli depend mainly on the contribution

of internal energy. The contribution of entropy to the elastic

moduli is negative or negligible. Meanwhile, the moduli of graft

copolymers are also dependent on the distribution of junction

points. To understand the effect of junction distribution on the

moduli, the internal energy is broken up into the energy from

respective blocks of backbone. It was found that the moduli

contributed from the internal energy of different blocks of the

backbone are associated with their lengths.
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