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ABSTRACT: Equilibrium phase diagrams serve as blueprints for rational design of
nanostructured materials of block copolymers, but their construction is time-consuming
and requires profound expertise. Herein, by virtue of the knowledge of self-consistent field
theory (SCFT), the active-learning method is developed to autonomously construct the
phase diagrams of block copolymers. Without human intervention, the SCFT-assisted
active-learning method can rapidly search the undetected phases and efficiently reproduce
the complicated phase diagrams of diblock copolymers and multiblock terpolymers via
decreasing the number of sampling points to about 20%. It is clearly demonstrated that the
combined uncertainty sampling/random selection scheme in the active-learning method
shows the outperformance in spite of a small amount of initial data set. This work
highlights the promising integration of theoretical modeling with machine learning and represents a crucial step toward rational
design of nanostructured materials.

Driven by a compromise between the minimization of
unfavorable contacts and the maximization of configura-

tional entropy, block copolymers self-assemble into a diversity
of ordered nanostructures or “nanophases”, which can act as
building units to develop next-generation devices as well as
create functional metamaterials.1−3 Equilibrium phase dia-
grams, which represent the dependence of thermodynamic
phases on a suite of variables (e.g., compositions and
interaction parameters), serve as blueprints for designing the
structural and functional materials. Currently, the phase
diagrams of diblock copolymers were mapped by grid search
methods,4−6 which require profound expertise and time/cost-
intensive investigations. Beyond the diblock copolymers,
incorporating distinct blocks and block types offers unlimited
potentials for achievement of extraordinary nanostructures, but
leads to a daunting challenge for the phase-diagram
construction in an expansive parameter space.7,8 Thus, an
advanced paradigm without human-decision is highly desirable
to construct the complicated phase diagrams through a
reduction of laborious and costly task.
Recently, machine-learning methods have been of tremen-

dous utility and growth in a variety of fields,9−11 including the
polymer science.12−16 Training a surrogate model to predict
the properties of molecules or materials often requires large
quantities of labeled data, which are actually scarce due to the
difficulties of high-throughput synthesis and automatic
characterization of polymers. Starting with “a small dataset”,
an active-learning method (i.e., a verification-by-learning
framework) augments the observations into the training data
set on-the-fly, dramatically reducing the number of labeled data
for the reliable surrogate model.17−20 Especially, on the basis of
the Gaussian process regression and the uncertainty sampling,

the active-learning methods were, respectively, applied to
accelerate the construction of phase diagrams of active matter
and inorganic compounds.21,22 However, considering the
diversity and complexity of block copolymers, there are so
far very few studies that use the active-learning method to
make surrogate predictions for their phase diagrams. If
available, such data-driven workflows could be extremely
helpful in the rational design of nanostructured materials of
block copolymers.
In this contribution, in conjunction with the well-developed

SCFT,23,24 the active-learning method is proposed to
autonomously generate the training data of estimated phase
diagrams on-the-fly and thereby reduces both the size of the
training data and the computational intensity of SCFT for the
phase diagrams. It is demonstrated that the SCFT-assisted
active-learning method can efficiently train a high-quality
surrogate model to construct the phase diagrams of block
copolymers without human intervention. Furthermore, our
proposed method is generalized to accelerate the autonomous
construction of complicated phase diagrams of multiblock
terpolymers. Note that the current active-learning method is
most suitable for the studies, where the explored phases are
already known, but the phase boundaries need to be explored.
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Figure 1 schematically illustrates the workflow of autono-
mous construction of phase diagrams through integration of

active-learning method and theory-based knowledge. (I) A few
initial points in the composition ( f)−Flory−Huggins (χN)
parameter space of phase diagrams are randomly selected and
labeled by indices p = [α, β, ...] of equilibrium phases. (II)
Label propagation algorithm is applied to deduce probability
distributions P(X, p) of labeled phases p for all unchecked
points at position X of parameter space.25 (III) P(X, p) are
used to calculate uncertainty scores S(X) by the margin
sampling estimator.26 (IV) Next, the candidate point is
recommended from unchecked points with the maximum
uncertainty score if Smax − Smin ≥ δ, denoted by the uncertainty
sampling (US) scheme, where Smax, Smin, and δ are,
respectively, the maximum, minimum, and trade-off values of
S(X). In the case of Smax − Smin < δ, a random selection (RS)
scheme is introduced to recommend next candidate. (V) For
the recommended candidate, the SCFT is used to identify the
equilibrium phases. The above steps II−V are repeated until
the phase diagrams are acceptably refined. (VI) Final phase
diagrams with finer grid of parameter space are estimated by
the method of phase estimation in step II. More details about
the model can refer to Parts A and B of the Supporting
Information (SI).
We first demonstrate that the SCFT-assisted active-learning

method with a minimal amount of initial data set can
autonomously construct the phase diagrams of simple AB
diblock copolymers. Figures 2 and S1 of the SI show the
refinement of phase diagrams of diblock copolymers.
Considering the mirror symmetry indicated by the dashed
lines in Figure 2, we only sample the left portion, but draw the
full diagrams in the range of 0.1 ≤ f ≤ 0.9 and 10.0 ≤ χN ≤
20.0, which are divided into 41 × 41 grid. A single point
labeled by the disordered state (Dis) is used to warm up the
training process of active learning. After 10 cycles of active
learning, a variety of unlabeled phases (i.e., lamellae (Lam),
hexagonally packed cylinders (Hex), body-centered-cubic
spheres (BCC), and gyroid (Gyr)) are detected (Figure 2a).
The phase diagrams are gradually refined as the cycles of active
learning continue to be advanced (Figure S1 of the SI).
As shown in the left panel of Figure 2b, a total of 162

sampling points are mainly distributed around the phase
boundaries, indicating the realization of efficient sampling of
phase diagram. Right panel of Figure 2b shows the final phase

diagram of diblock copolymers under the 599 × 300 grid of
parameter space. The accurate phase diagram is reproduced by
the trained surrogate model of active-learning method. This
example clearly demonstrates that our developed method is
able to recommend the sampling points of phase diagram and
to train a high-quality surrogate model for the reproduction of
classic phase diagrams of diblock copolymers.
An important improvement of our developed method is that

the uncertainty sampling is combined with the random
selection to recommend the next candidates in the cycles of
active learning. For comparison, we also present the results of
random selection only (RS only) and uncertainty sampling
only (US only). Since lots of candidates are randomly selected
away from the phase boundaries, the efficient sampling is not
realized for the RS only (Figure S2 of the SI). For the US only,
the candidate points are intensively recommended in the lower
f region (Figure S3 of the SI), which leads to a great difficulty
in detecting all phases. Such issues can be resolved by the US/
RS scheme, where the recommendation of sampling points is
provided by the integration of effective decision-making route
for next-best candidates and random fashion of gained
knowledge. This integration allows us to rapidly search the
undetected phases and intensively refine the boundaries of
detected phases. Consequently, the RS/US scheme lowers the
total computational intensity of SCFT due to a reduction of
considered candidates (i.e., the number of cycles) for the phase
diagrams.
Next, we introduce the number of detected phases and

macro-averaged F1 (Macro-F1) score to quantitatively evaluate
the performance of phase-diagram construction. Especially,
Macro-F1 score assesses the accuracy of estimated phase
diagrams.28 For a phase indexed by p, F1 score is written as
F1(p) = 2Pr(p)Re(p)/(Pr(p) + Re(p)), where Pr(p) and
Re(p) are, respectively, the precision and the recall. The
Macro-F1 score is defined as the arithmetic mean of F1 scores

Figure 1. Closed-loop autonomous construction of phase diagrams
based on physics-informed active learning.

Figure 2. Refinement of f−χN phase diagrams of diblock copolymers
via the US/RS scheme in the SCFT-assisted active learning. The set
of diagrams is obtained after (a) nC = 10 and (b) nC = 162 cycles of
active learning. (Left) Summarization of already sampling points. The
triangles, filled and hollow circles represent the initial, uncertainty
sampling and random selection points, respectively. (Right) Estimated
phase diagrams by the active-learning method. The sampling points
and phases’ regions are represented by various colors. The solid lines
represent the accurate phase boundaries.27
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of all labeled phases. When the Macro-F1 score approaches
one, the estimated phase diagram exactly reproduces the
accurate one.
Figure 3a,b shows the number of detected phases and the

Macro-F1 score as a function of the number nC of cycles for

the US and US/RS schemes. About 300 cycles are required to
detect all phases for the US scheme only. However, the US/RS
scheme remarkably reduces the number of cycles to detect all
phases, because it is able to search unexplored regions of phase
diagrams by the random selection of candidate points.
Correspondingly, the curves of Macro-F1 score have a sharp
slope at this stage. After detecting all phases, the diagrams are
mainly sampled around the phase boundaries, and the change
rate of Macro-F1 score slows down. Eventually, the accuracy of
estimated phase diagrams reaches the stopping criteria, that is,
1 − Macro-F1 ≤ 10−3. Therefore, the outperformance of US/
RS scheme originates from the fact that the undetected phases
can be rapidly searched by the RS scheme, accompanying the
recommendation of “next-best candidates” in the US scheme.
In order to assess the effect of random choice of initial

points, the entire workflow of active learning is repeated 200
times for each sampling scheme. Figure 3c,d shows the relative
frequency distributions of the number nC,P of cycles to detect
all phases and the number nC,F1 of cycles to reach a Macro-F1
score of 0.95 (as defined in Figure 3a,b). As the active learning
adopts the US/RS scheme, both histograms respectively
exhibit narrow distributions with a single peak at nC,P = 20
and nC,F1 = 120. However, for the US only, the frequency
distributions shift to larger numbers of cycles and exist the
bimodal population.
The average numbers of nC,P and nC,F1 as well as their

standard deviations are calculated to evaluate the performance

of active learning in terms of the number nP of initial points
(Figure 3e,f). For both sampling schemes, the performance of
active learning becomes excellent with an increase of nP.
However, in the case of nP ≤ 4, the US/RS scheme performs
exceptionally well in comparison with the US scheme only.
Particularly, it requires less cycles to detect all phases and reach
a Macro-F1 score of 0.95. Meantime, the performance of US/
RS scheme is weakly dependent upon the random choice of
initial points (i.e., small standard deviations). These findings of
Figure 3 manifest the fact that it is enough to utilize a small
amount of initial data set to realize the outperformance of
active learning via the US/RS scheme.
Furthermore, the performance of these sampling schemes is

evaluated against the RS scheme only for nP = 1 (Table 1). The

US/RS scheme rapidly finds all phases. The average number
n̅C,F1 of cycles is reduced to ∼20% through using the US/RS
scheme, which still remains a high accuracy of estimated phase
diagrams. Note that the estimator of uncertainty scores and the
trade-off value δ also play important roles in affecting the
performance of active learning (Figures S4−S7 of the SI).
Importantly, the active-learning method can be extended to

reduce the SCFT calculations of possible phases and propose
the conditions of unstudied phases. On the basis of the
probability distributions P of labeled phases, the scheme of top
candidates can reduce the computational intensity of possible
phases to about 80% (Figure S8 of the SI). The scheme of
entropy-based uncertainty scores defined in eq S11 of the SI is
proposed to recommend the possible regions of novel phases
(Figure S9 of the SI).
With these backgrounds in place, we finally shift our focus to

a more challenging issue, demonstrating the generalization of
autonomous construction for extremely complicated phase
diagrams of block copolymers. As a typical example, linear
B1AB2CB3 pentablock terpolymers consist of the incompati-
bility A and C blocks (Figure 4a),29,30 which respectively form
distinct nanodomains connected by middle B2 blocks. The
multiblock terpolymers self-assemble into a broad spectrum of
mesocrystals. Particularly, through tuning the composition fA of
A or C blocks and the composition f B2 of B2 blocks, the
pentablock terpolymers form binary spherical mesocrystals
including CsCl with Pm3m symmetry, ZnSC with F43m, NaCl
with Fm3m and α-BN with P63/mmc, and cylindrical phases
(e.g., hexagonally packed cylinders CA/C, CP4mm

4 , CP3m1
3 , and

CC2mm
2 , where the superscript indicates the coordination

number), which are shown in Figure 4b. The diversity and
complexity of the ordered nanostructures dramatically increase
the difficulties of phase-diagram construction.
We herein concentrate on the two-dimensional, known

phase diagram with respect to the fA−f B2 parameter space
under the restrictions of the composition fA = f C and f B1 = f B3,
as well as the Flory−Huggins interaction parameters χABN =
χACN = χBCN = 80.0. Initially, a single point is randomly

Figure 3. Performance comparison of phase-diagram construction via
the US and US/RS schemes. (a) Number of detected phases and (b)
Macro-F1 score as a function of the number nC of cycles. The number
of initial points is one. (c, d) Histograms of relative frequencies of nC,P
and nC,F1. (e, f) Average numbers n̅C,P and n̅C,F1 as a function of the
number nP of initial points. The error bars stand for the standard
deviations.

Table 1. Performance Comparison of Phase-Diagram
Construction via the US/RS, US, and RS Schemes

sampling scheme n̅C,P n̅C,F1

US/RS 17 (0.61)a 110 (0.21)
US only 159 (5.68) 258 (0.49)
RS only 28 (1.00) 528 (1.00)

aThe parentheses denote the reduction ratios of US/RS and US
schemes in comparison with the RS scheme.
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selected in the extremely narrow range of 0.10 ≤ fA ≤ 0.16 and
0.06 ≤ f B2 ≤ 0.18, which are divided into 25 × 25 grid. Figure
4c−e shows the final refined results of active learning for the
pentablock terpolymers. The 200 sampling points in the
narrow fA−f B2 parameter space are mainly distributed around
the phase boundaries with higher uncertainty scores. The
trained surrogate model of active learning correctly replicates
the complicated phase diagram of pentablock terpolymers, and
the estimated boundaries have a good match with the human-
determined curves.29 Therefore, the SCFT-assisted active-
learning method can autonomously construct the complicated
phase diagrams of multiblock terpolymers.
In summary, we develop an active-learning method in

conjunction with the SCFT to successfully accelerate the
autonomous construction of phase diagrams of block
copolymers. It is demonstrated that our proposed US/RS
scheme in the active-learning method shows the best
performance in terms of the number of detected phases and
the accuracy of estimated phase diagrams, in spite of a small
amount of initial data set. Furthermore, the developed active-
learning method could be applied to accelerate the
autonomous construction of complicated phase diagrams of
multiblock terpolymers. It should be mentioned that the
avenue forward for the further improvement of active learning
lies in the usages of multipoint sampling in each cycle and label
propagation algorithm considering the free energy land-
scape.21,25

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsmacrolett.1c00133.

Self-consistent field theory of block copolymers; Phase
diagram construction via active learning; Additional
figures (PDF)

■ AUTHOR INFORMATION
Corresponding Authors
Liangshun Zhang − Shanghai Key Laboratory of Advanced
Polymeric Materials, Key Laboratory for Ultrafine Materials
of Ministry of Education, School of Materials Science and
Engineering, East China University of Science and

Technology, Shanghai 200237, China; orcid.org/0000-
0002-0182-7486; Email: zhangls@ecust.edu.cn

Weihua Li − State Key Laboratory of Molecular Engineering of
Polymers, Key Laboratory of Computational Physical
Sciences, Department of Macromolecular Science, Fudan
University, Shanghai 200438, China; orcid.org/0000-
0002-5133-0267; Email: weihuali@fudan.edu.cn

Jiaping Lin − Shanghai Key Laboratory of Advanced
Polymeric Materials, Key Laboratory for Ultrafine Materials
of Ministry of Education, School of Materials Science and
Engineering, East China University of Science and
Technology, Shanghai 200237, China; orcid.org/0000-
0001-9633-4483; Email: jlin@ecust.edu.cn

Authors
Shuochen Zhao − Shanghai Key Laboratory of Advanced
Polymeric Materials, Key Laboratory for Ultrafine Materials
of Ministry of Education, School of Materials Science and
Engineering, East China University of Science and
Technology, Shanghai 200237, China

Tianyun Cai − Shanghai Key Laboratory of Advanced
Polymeric Materials, Key Laboratory for Ultrafine Materials
of Ministry of Education, School of Materials Science and
Engineering, East China University of Science and
Technology, Shanghai 200237, China

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsmacrolett.1c00133

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of China (22073028, 21873029, 51833003, and
21925301). We sincerely thank the anonymous reviewers for
their helpful suggestions, which result in substantial improve-
ments of the model.

■ REFERENCES
(1) Bates, F. S.; Fredrickson, G. H. Block Copolymer Thermody-
namics: Theory and Experiment. Annu. Rev. Phys. Chem. 1990, 41,
525−557.

Figure 4. (a) Molecular architecture of B1AB2CB3 pentablock terpolymers. (b) Ordered nanostructures of pentablock terpolymers. The A- and C-
rich nanodomains are indicated by the red and blue colors, respectively. (c) Summarization of already sampling points in the active learning. (d)
Plot of uncertainty scores. (e) Estimated phase diagram of active learning. The solid lines represent the original phase boundaries of SCFT.29

ACS Macro Letters pubs.acs.org/macroletters Letter

https://doi.org/10.1021/acsmacrolett.1c00133
ACS Macro Lett. 2021, 10, 598−602

601

https://pubs.acs.org/doi/10.1021/acsmacrolett.1c00133?goto=supporting-info
http://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.1c00133/suppl_file/mz1c00133_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Liangshun+Zhang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-0182-7486
http://orcid.org/0000-0002-0182-7486
mailto:zhangls@ecust.edu.cn
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Weihua+Li"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-5133-0267
http://orcid.org/0000-0002-5133-0267
mailto:weihuali@fudan.edu.cn
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jiaping+Lin"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0001-9633-4483
http://orcid.org/0000-0001-9633-4483
mailto:jlin@ecust.edu.cn
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Shuochen+Zhao"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tianyun+Cai"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmacrolett.1c00133?ref=pdf
https://doi.org/10.1146/annurev.pc.41.100190.002521
https://doi.org/10.1146/annurev.pc.41.100190.002521
https://pubs.acs.org/doi/10.1021/acsmacrolett.1c00133?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmacrolett.1c00133?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmacrolett.1c00133?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmacrolett.1c00133?fig=fig4&ref=pdf
pubs.acs.org/macroletters?ref=pdf
https://doi.org/10.1021/acsmacrolett.1c00133?rel=cite-as&ref=PDF&jav=VoR


(2) Bates, C. M.; Maher, M. J.; Janes, D. W.; Ellison, C. J.; Willson,
C. G. Block Copolymer Lithography. Macromolecules 2014, 47, 2−12.
(3) Hampu, N.; Werber, J. R.; Chan, W. Y.; Feinberg, E. C.;
Hillmyer, M. A. Next-Generation Ultrafiltration Membranes Enabled
by Block Polymers. ACS Nano 2020, 14, 16446−16471.
(4) Bates, F. S.; Schulz, M. F.; Khandpur, A. K.; Förster, S.;
Rosedale, J. H.; Almdal, K.; Mortensen, K. Fluctuations, Conforma-
tional Asymmetry and Block Copolymer Phase Behaviour. Faraday
Discuss. 1994, 98, 7−18.
(5) Lee, S.; Bluemle, M. J.; Bates, F. S. Discovery of a Frank- Kasper
Phase in Sphere-Forming Block Copolymer Melts. Science 2010, 330,
349−353.
(6) Li, W.; Liu, M.; Qiu, F.; Shi, A.-C. Phase Diagram of Diblock
Copolymers Confined in Thin Films. J. Phys. Chem. B 2013, 117,
5280−5288.
(7) Qin, J.; Bates, F. S.; Morse, D. C. Phase Behavior of
Nonfrustrated ABC Triblock Copolymers: Weak and Intermediate
Segregation. Macromolecules 2010, 43, 5128−5136.
(8) Bates, F. S.; Hillmyer, M. A.; Lodge, T. P.; Bates, C. M.; Delaney,
K. T.; Fredrickson, G. H. Multiblock Polymers: Panacea or Pandora’s
Box? Science 2012, 336, 434−440.
(9) Butler, K. T.; Davies, D. W.; Cartwright, H.; Isayev, O.; Walsh,
A. Machine Learning for Molecular and Materials Science. Nature
2018, 559, 547−555.
(10) Moosavi, S. M.; Jablonka, K. M.; Smit, B. The Role of Machine
Learning in the Understanding and Design of Materials. J. Am. Chem.
Soc. 2020, 142, 20273−20287.
(11) Batra, R.; Song, L.; Ramprasad, R. Emerging Materials
Intelligence Ecosystems Propelled by Machine Learning. Nat. Rev.
Mater. 2020, na DOI: 10.1038/s41578-020-00255-y.
(12) Audus, D. J.; de Pablo, J. J. Polymer Informatics: Opportunities
and Challenges. ACS Macro Lett. 2017, 6, 1078−1082.
(13) Aoyagi, T. Deep Learning Model for Predicting Phase
Diagrams of Block Copolymers. Comput. Mater. Sci. 2021, 188,
110224.
(14) Tu, K.; Huang, H.; Lee, S.; Lee, W.; Sun, Z.; Alexander-Katz,
A.; Ross, C. A. Machine Learning Predictions of Block Copolymer
Self-Assembly. Adv. Mater. 2020, 32, 2005713.
(15) Khadilkar, M. R.; Paradiso, S. P.; Delaney, K. T.; Fredrickson,
G. H. Inverse Design of Bulk Morphologies in Multiblock Polymers
Using Particle Swarm Optimization. Macromolecules 2017, 50, 6702−
6709.
(16) Li, J.; Zhang, H.; Chen, J. Z. Y. Structural Prediction and
Inverse Design by a Strongly Correlated Neural Network. Phys. Rev.
Lett. 2019, 123, 108002.
(17) Kim, C.; Chandrasekaran, A.; Jha, A.; Ramprasad, R. Active-
Learning and Materials Design: The Example of High Glass
Transition Temperature Polymers. MRS Commun. 2019, 9, 860−866.
(18) Loeffler, T. D.; Patra, T. K.; Chan, H.; Cherukara, M.;
Sankaranarayanan, S. K. R. S. Active Learning the Potential Energy
Landscape for Water Clusters from Sparse Training Data. J. Phys.
Chem. C 2020, 124, 4907−4916.
(19) Tian, Y.; Yuan, R.; Xue, D.; Zhou, Y.; Ding, X.; Sun, J.;
Lookman, T. Role of Uncertainty Estimation in Accelerating Materials
Development via Active Learning. J. Appl. Phys. 2020, 128, 014103.
(20) Shmilovich, K.; Mansbach, R. A.; Sidky, H.; Dunne, O. E.;
Panda, S. S.; Tovar, J. D.; Ferguson, A. L. Discovery of Self-
Assembling π-Conjugated Peptides by Active Learning-Directed
Coarse-Grained Molecular Simulation. J. Phys. Chem. B 2020, 124,
3873−3891.
(21) Dai, C.; Glotzer, S. C. Efficient Phase Diagram Sampling by
Active Learning. J. Phys. Chem. B 2020, 124, 1275−1284.
(22) Terayama, K.; Tamura, R.; Nose, Y.; Hiramatsu, H.; Hosono,
H.; Okuno, Y.; Tsuda, K. Efficient Construction Method for Phase
Diagrams Using Uncertainty Sampling. Phys. Rev. Mater. 2019, 3,
033802.
(23) Matsen, M. W. The Standard Gaussian Model for Block
Copolymer Melts. J. Phys.: Condens. Matter 2002, 14, R21−R47.

(24) Arora, A.; Qin, J.; Morse, D. C.; Delaney, K. T.; Fredrickson, G.
H.; Bates, F. S.; Dorfman, K. D. Broadly Accessible Self-Consistent
Field Theory for Block Polymer Materials Discovery. Macromolecules
2016, 49, 4675−4690.
(25) Zhu, X.; Ghahramani, Z.; Lafferty, J. Semi-Supervised Learning
Using Gaussian Fields and Harmonic Functions. Proceedings of the
Twentieth International Conference on Machine Learning; AAAI Press,
2003; 912−919.
(26) Scheffer, T.; Decomain, C.; Wrobel, S. Active Hidden Markov
Models for Information Extraction. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics); 2001, 2189, 309−318.
(27) Matsen, M. W.; Bates, F. S. Unifying Weak- and Strong-
Segregation Block Copolymer Theories. Macromolecules 1996, 29,
1091−1098.
(28) Yang, Y. An Evaluation of Statistical Approaches to Text
Categorization. Inf. Retr. Boston. 1999, 1, 69−90.
(29) Xie, N.; Liu, M.; Deng, H.; Li, W.; Qiu, F.; Shi, A.-C.
Macromolecular Metallurgy of Binary Mesocrystals via Designed
Multiblock Terpolymers. J. Am. Chem. Soc. 2014, 136, 2974−2977.
(30) Xie, Q.; Qiang, Y.; Li, W. Regulate the Stability of Gyroids of
ABC-Type Multiblock Copolymers by Controlling the Packing
Frustration. ACS Macro Lett. 2020, 9, 278−283.

ACS Macro Letters pubs.acs.org/macroletters Letter

https://doi.org/10.1021/acsmacrolett.1c00133
ACS Macro Lett. 2021, 10, 598−602

602

https://doi.org/10.1021/ma401762n
https://doi.org/10.1021/acsnano.0c07883
https://doi.org/10.1021/acsnano.0c07883
https://doi.org/10.1039/FD9949800007
https://doi.org/10.1039/FD9949800007
https://doi.org/10.1126/science.1195552
https://doi.org/10.1126/science.1195552
https://doi.org/10.1021/jp309546q
https://doi.org/10.1021/jp309546q
https://doi.org/10.1021/ma100400q
https://doi.org/10.1021/ma100400q
https://doi.org/10.1021/ma100400q
https://doi.org/10.1126/science.1215368
https://doi.org/10.1126/science.1215368
https://doi.org/10.1038/s41586-018-0337-2
https://doi.org/10.1021/jacs.0c09105
https://doi.org/10.1021/jacs.0c09105
https://doi.org/10.1038/s41578-020-00255-y
https://doi.org/10.1038/s41578-020-00255-y
https://doi.org/10.1038/s41578-020-00255-y?ref=pdf
https://doi.org/10.1021/acsmacrolett.7b00228
https://doi.org/10.1021/acsmacrolett.7b00228
https://doi.org/10.1016/j.commatsci.2020.110224
https://doi.org/10.1016/j.commatsci.2020.110224
https://doi.org/10.1002/adma.202005713
https://doi.org/10.1002/adma.202005713
https://doi.org/10.1021/acs.macromol.7b01204
https://doi.org/10.1021/acs.macromol.7b01204
https://doi.org/10.1103/PhysRevLett.123.108002
https://doi.org/10.1103/PhysRevLett.123.108002
https://doi.org/10.1557/mrc.2019.78
https://doi.org/10.1557/mrc.2019.78
https://doi.org/10.1557/mrc.2019.78
https://doi.org/10.1021/acs.jpcc.0c00047
https://doi.org/10.1021/acs.jpcc.0c00047
https://doi.org/10.1063/5.0012405
https://doi.org/10.1063/5.0012405
https://doi.org/10.1021/acs.jpcb.0c00708
https://doi.org/10.1021/acs.jpcb.0c00708
https://doi.org/10.1021/acs.jpcb.0c00708
https://doi.org/10.1021/acs.jpcb.9b09202
https://doi.org/10.1021/acs.jpcb.9b09202
https://doi.org/10.1103/PhysRevMaterials.3.033802
https://doi.org/10.1103/PhysRevMaterials.3.033802
https://doi.org/10.1088/0953-8984/14/2/201
https://doi.org/10.1088/0953-8984/14/2/201
https://doi.org/10.1021/acs.macromol.6b00107
https://doi.org/10.1021/acs.macromol.6b00107
https://doi.org/10.1007/3-540-44816-0_31
https://doi.org/10.1007/3-540-44816-0_31
https://doi.org/10.1021/ma951138i
https://doi.org/10.1021/ma951138i
https://doi.org/10.1023/A:1009982220290
https://doi.org/10.1023/A:1009982220290
https://doi.org/10.1021/ja412760k
https://doi.org/10.1021/ja412760k
https://doi.org/10.1021/acsmacrolett.9b00966
https://doi.org/10.1021/acsmacrolett.9b00966
https://doi.org/10.1021/acsmacrolett.9b00966
pubs.acs.org/macroletters?ref=pdf
https://doi.org/10.1021/acsmacrolett.1c00133?rel=cite-as&ref=PDF&jav=VoR

