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Self-consistent field theory study of the solvation
effect in polyelectrolyte solutions: beyond the
Poisson–Boltzmann model†

Liquan Wang, Jiaping Lin* and Qian Zhang

We developed a self-consistent field theory to study the solvation effect in polyelectrolyte solutions by

taking into account the dipolar feature of polar solvents. A Langevin Poisson–Boltzmann equation

describing the electrostatic interactions was derived at the mean-field level and numerically solved by an

ad-hoc direct spectral algorithm. This method enables the SCFT to be implemented in real space. The

developed self-consistent field model was applied to salt-free concentrated solutions of diblock

polyampholytes and charged–neutral diblock copolymers. It was found that an increase in the

magnitude of dipole moments can lead to an increase in the effective dielectric constant and thereby

the change of the phase behaviors. As the magnitude of the dipole moment increases, the segregation

between dissimilar blocks becomes strong, and the lamellar spacing undergoes a non-monotonic

variation where the spacing first decreases and then increases to reach a plateau. The proposed

calculation method can be extended to the solutions of polyelectrolytes with different architectures and

polar solutions containing added salts.
Introduction

Polyelectrolytes, bearing a number of dissociated ionic groups,
are one of the most important classes of polymers due to their
wide industrial applications and bio-related characteristics.1–3

Notable examples of such systems include proteins, nucleic
acids, and synthetic polymers like polyacrylic acid.4 Until now,
polyelectrolytes have been the least understood polymeric
systems, since the polymeric systems involve a complex inter-
play between short-range excluded volume interactions and
long-range Coulomb interactions. Meanwhile, the poly-
electrolyte solution is electrically neutral, where the poly-
electrolytes are embedded in an environment comprising the
counterions, polar solvents, and other dissociated salt ions.
Therefore, there exists an additional interplay among the large
polyelectrolyte molecules, solvent molecules, and small ions
that are coupled electrostatically. In view of this complex
interplay, it is a challenge to develop theoretical descriptions of
the thermodynamic properties of the polyelectrolyte solutions,
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in an effort to explain some trends observed in experiments and
make predictions.

A self-consistent eld theory (SCFT), coupled with the Pois-
son–Boltzmann (PB) theory, has been developed to describe the
polyelectrolyte systems in the absence/presence of added salt
ions. The SCFT, based on the eld theory rst proposed by
Edwards,5,6 has been a standard technique for investigating the
phase behaviors of neutral polymeric systems.7–15 In the
framework of SCFT, the long-range Coulomb interactions are
converted to the short-range interactions through a Hubbard–
Stratonovich transformation.16 It therefore exhibits advantages
over particle-based simulations in some aspects like computa-
tional expense. The SCFT approach for polyelectrolyte systems
was rst proposed by Borukhov et al. for semidilute solutions of
polyelectrolytes and polyampholytes possessing various charge
distributions,17,18 and further generalized by Shi and Noolandi
to multicomponent polyelectrolyte systems.19 This approach
was also applied to study the phase separation of block poly-
electrolytes,20–23 adsorption of polyelectrolytes on a charged
surface,24–26 polymer brushes,27,28 connement effects,29 coun-
terion adsorption,30 and so on.

In most of the previous studies, the polyelectrolyte systems
were modeled with a homogeneous and isotropic dielectric
constant, and the strong dielectric response of polar solvents
(e.g., water) around charges was not taken into consideration.
As a matter of fact, the polar molecules like water could orient
themselves close to charged objects, giving rise to hydration
shells and inhomogeneous dielectric response. It also means
that the long-range Coulomb forces can be partly screened by
Soft Matter, 2013, 9, 4015–4025 | 4015
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Fig. 1 Sketch of the diblock polyelectrolytes in polar solvents. The system
contains the polyelectrolytes, positive counterions released from A blocks,
negative counterions released from B blocks, and polar solvents modeled as
permanent Langevin dipoles.
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polar solvents. This screening effect is essential to gain insight
into the behavior of the polyelectrolytes in solutions, and
therefore cannot be ignored.1,2 Wang et al. have considered the
inuence of the inhomogeneous dielectric constant on the
phase behavior of polyelectrolyte solutions.20 In their assump-
tion, the dielectric constant was treated as a position-dependent
parameter by incorporating it with the local densities of the
polyelectrolytes and solvents. This assumption, however, still
does not explicitly take into account the screening effect
resulting from the orientational ordering of polar solvents.
Although the spatially varying dielectric constant may involve
the ion–solvent interactions implicitly, its validity should be
tested and how to associate the implicit dielectric constant with
the ion–solvent interactions is unclear. Therefore, the question
still remains as to how the presence of polar solvents such as
water inuences the phase behavior of the polyelectrolytes
in detail.

To address this problem, we assumed the polar solvents
explicitly as freely orienting Langevin dipoles, as proposed by
Orland and Iglič et al.31–36 Based on this assumption, a SCFT
coupled with the Langevin Poisson–Boltzmann (LPB) equation
was developed rigorously. The LPB equation, which can
describe the electrostatic interactions between the charged
objects and polar solvents, was solved using an ad-hoc direct
spectral method,37 and the SCFT equations were solved by
employing a real-space numerical scheme.38,39 The numerical
method for studying the polyelectrolytes in polar solvents was
found to be as efficient as that for neutral polymeric systems.
In the present work, we took two polyelectrolyte systems as
examples, namely, diblock polyampholyte solutions and
charged–neutral diblock polyelectrolyte solutions, and inves-
tigated the effect of the magnitude of the dipole moment on
their phase behaviors including density distribution and
lamellar spacing. It was found that the increase of the
magnitude of the dipole moment can lead to a screening of
charges, and thereby inuences the phase behaviors of poly-
electrolytes. The results indicate that our method might be a
feasible tool for studying the solvation effect in polyelectrolyte
solutions.
Theoretical method
SCFT formalism

In this work, we considered a system of volume V consisting of
nP diblock polyelectrolytes and nS polar solvents, as shown in
Fig. 1. Each copolymer processes N total statistical segments
with NA segments A and NB segments B. The volume fractions of
A and B blocks in the diblock polyelectrolytes are represented as
f and 1 � f, respectively. The bulk densities, i.e., number per
unit volume, of polymer segments, solvents, and ions are
denoted as r0P, r

0
S, and r0�, respectively. We assumed that all the

polymer segments have the same bulk density as the solvents,
i.e., r0P ¼ r0S ¼ r0 (r0 is dened as a reference density). In addi-
tion, n� ¼ r0/r

0
� is introduced to represent the ratio of the

polymer segment density to ion density. Since the ions are
much smaller than the polymer segments (or solvents), the
value of n� should be much smaller than 1. The subscripts A, B,
4016 | Soft Matter, 2013, 9, 4015–4025
S, +, and – in the variables are used to represent the A blocks, B
blocks, polar solvents, cations, and anions, respectively. The
valence number of charged species is denoted as zk(k ¼ A, B, +,
�), and the corresponding charge is zke (e is elementary charge).
The polar solvent molecule is described as the Langevin dipoles
with a non-zero dipole moment p (see Fig. 1). The procedure of
deriving SCFT equations is similar to that in the work of Shi and
Noolandi.19 In the following, we aim to show how the Langevin
Poisson–Boltzmann equation including the ion–solvent inter-
actions is derived and coupled with the SCFT equations.

The partition function of the diblock polyelectrolytes with
annealed charge distributions in polar solvents can be written
in terms of a functional integral over all the chain conforma-
tion, the positions and orientations of polar solvents, and the
ion positions

Z ¼
Y
j

 
z
nj
j

nj !

!"YnP
k¼1

X
fqkðsÞg

PðfqkðsÞgÞ
# YnP

k¼1

ð
DRk

!

�
Y
I

 YnI
k¼1

ð
drIk

! YnS
k¼1

ð
drSk

ð
dpk

!

�
ð
Dj expð�bHÞd

�ð
drf̂eðrÞ

�Y
r

d

"X
j

f̂jðrÞ � 1

#
(1)

where zj is the partition function of a single molecule due to the
kinetic energy. qk(s) denotes the dissociation of the sth segment,
kth polymer chain. P({qk(s)}) is the probability of a particular
charge distribution, and

P
fqkðsÞg

is a summation over the charge

distributions for the kth chain. The subscripts j and I denote all
the species in the system and small ions (+ and �), respectively.
Rk represents the space curve of the kth polymer chain, rIk
represents the position of the kth ion of type I, and rSk represents

the position of the kth solvent molecule. b ¼ 1
kBT

is the inverse of

the thermal energy, where kB and T are the Boltzmann constant
and temperature, respectively. In eqn (1), the Hamiltonian H of
the system consists of three parts
H ¼ H0 + H1 + H2 (2)
This journal is ª The Royal Society of Chemistry 2013
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Here,H0 describes the elastic energy of Gaussian chains (b is the
statistical segment length)

H0 ¼
XnP
k¼1

3

2bb2

ðN
0

ds

����dRkðsÞ
ds

����
2

(3)

H1 is the short-range interaction energy of the system

H1 ¼ r0

2b

X
j; j0

jsj0

ð
drcjj0 f̂jðrÞf̂j0 ðrÞ (4)

where the Flory–Huggins parameter cjj0(j,j0 ¼ A, B, C, +, �) is a
dimensionless phenomenological parameter describing the
interaction strength between j and j0 species (in unit of kBT).
Thus, the interaction energy H1 is independent of the temper-
ature T. H2 is the electrostatic energy of the system

H2 ¼
ð
drf̂eðrÞjðrÞ �

ð
dr

3ðrÞ
8p

jVjðrÞj2 (5)

where f̂e(r), j(r), and 3(r) are the total charge density, electro-
static potential, and dielectric constant at position r, respec-
tively. Here, the solvents are considered as explicit permanent
dipoles in a background medium formed by the polymers and
solvents. The relevant density operators are dened as

f̂AðrÞ ¼
1

r0

XnP
k¼1

ðNA

0

dsd
�
r� RkðsÞ

�

f̂BðrÞ ¼
1

r0

XnP
k¼1

ðN
NA

dsd
�
r� RkðsÞ

�

f̂SðrÞ ¼
1

r0

XnS
k¼1

d
�
r� rSk

�

f̂�ðrÞ ¼
n�
r0

Xn�
k¼1

d
�
r� r�k

�

(6)

The total charge is a sum over the contributions from the
polyions, ions, and solvents

f̂eðrÞ ¼ e
XnP
k¼1

ðN
0

dszPqkðsÞdðr� RkðsÞÞ þ
X
I¼þ;�

XnI
k

zI edðr� rIkÞ

�
XnS
k

pk$Vdðr� rSk Þ (7)

8
N

QP ¼

ð
DR

X
fqðsÞg

PðfqðsÞgÞexp
<
:�

ð
0

ds

�
3

2b2

���dRðsÞds

���
2

þ ukðRðsÞÞ þ qðsÞzke4ðRðsÞÞ
	=
;

ð
DRexp

8<
:�

ðN
0

ds
3

2b2

����dRðsÞds

����
2

9=
;

(13)
where zP ¼ zA if s # NA and zP ¼ zB if s $ NA.
In eqn (1), the rst d function represents the charge

neutrality of the whole system, and the second d function
imposes the incompressibility at all positions r. Through
inserting the following identity into eqn (1),
This journal is ª The Royal Society of Chemistry 2013
1 ¼
Y
j

ð
DfjD

�
r0uj

�
exp

�ð
drr0ujðrÞ

�
fjðrÞ � f̂jðrÞ

	

(8)

it introduces a density eld fj(r) constrained to f̂j(r) and an
effective chemical potential eld uj(r) conjugated to the density
elds. Next, we inserted eqn (6) and the following two d func-
tions into eqn (1)

d(
Ð
drf̂e(r)) ¼

Ð
dhexp{�h

Ð
drf̂e(r)} (9)

Y
r

d

 
r0

"X
j

fjðrÞ � 1

#!
¼
ð
Dx exp

(
�
ð
drxðrÞr0

"X
j

fjðrÞ � 1

#)

(10)

where the Lagrange multipliers h and x(r) are introduced to
ensure the charge neutrality and incompressibility of the
systems, respectively. The h can be absorbed into j(r), i.e.,Ð
Dj
Ð
dhf(j(r) + h) f

Ð
Djf(j(r)). The partition function of the

system can then be written as

Zf

ðY
j

�
DfjDuj

�
DjDx expð�bFÞ (11)

where

bNF

r0V
¼ 1

V

ð
dr

(
1

2

X
j; j0

jsj0

cjj0NfjðrÞfj0 ðrÞ �N
X
j

ujðrÞfjðrÞ

� N3ðrÞ
8pr0b

jV4ðrÞj2 þNxðrÞ
"X

j

fjðrÞ � 1

#)
� cp ln

�
QP

V

�

�
X
I¼þ;�

NcI ln

�
QI

V

�
�NcS ln

�
QS

V

�

(12)

Here, cp ¼ nPN/r0V, c� ¼ n�/r0V, and cS ¼ nS/r0V are the
volume-averaged densities for the polyelectrolytes, small ions,
and solvents, respectively. They represent the number of
molecules in volume V. 4(r) is dened as 4(r) ¼ bj(r). The
dielectric constant 3(r) is assumed as a volume fraction
weighted average, i.e., 3ðrÞ ¼P

j
fjðrÞ3j (3j is the dielectric

constant of the species j).20 QP is the partition function of a
single polyelectrolyte chain
where k is A if s # NA and B if s $ NA. The annealed charge
distribution can be written in the form P({q(s)}) ¼ Psp(q(s),s).
For the smeared charge distributions, the charges are xed
and smeared along the chain so that p(q(s),s) ¼ d(q(s) � ak),
where ak is the charge fraction of the polymer segment of
Soft Matter, 2013, 9, 4015–4025 | 4017
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type k. By inserting the above relations into eqn (13), the QP for
the smeared charge distributions can be written as

QP ¼

ð
DR exp

8<
:�
ðN
0

ds

�
3

2b2

����dRðsÞds

����
2

þ ukðRðsÞÞ þ akzke4ðRðsÞÞ
	9=
;

ð
DR exp

8<
:�

ðN
0

ds
3

2b2

����dRðsÞds

����
2

9=
;

(14)

Q� is the partition function of a single ion

Q� ¼ Ðdr exp[�n�u�(r) � z�e4(r)] (15)

QS is the partition function of a single solvent

QS ¼ 1

4p

ð
dr

ð
dp exp½ � uSðrÞ � p$V4ðrÞ�

¼
ð
dr exp½�uSðrÞ� sinhðpjV4ðrÞjÞ

pjV4ðrÞj
(16)

The mean-eld equations are obtained by the saddle-point
approximation, where one sets dF/dfj ¼ 0, dF/duj ¼ 0, and
dF/dxj ¼ 0. The SCFT equations can be written as

ujðrÞ ¼
X
j; j0

jsj0

cjj0fj0 ðrÞ þ xðrÞ � 3j

8pr0b
jV4ðrÞj2 (17)

f�ðrÞ ¼
Vc�n�
Q�

exp½ � n�u�ðrÞ � z�e4ðrÞ� (18)

fAðrÞ ¼
VcP

QP

ðf
0

dsqðr; sÞqðr; 1� sÞ (19)

fBðrÞ ¼
VcP

QP

ð1
f

dsqðr; sÞqðr; 1� sÞ (20)

fSðrÞ ¼
VcS sinhðpjV4ðrÞjÞ

QSpjV4ðrÞj exp½�uSðrÞ� (21)

X
j

fjðrÞ � 1 ¼ 0 (22)

where the propagator q(r, s), representing the probability of
nding the sth segment that starts from the A block end at
position r, satises the following modied diffusion equations

(Rg ¼ b

ffiffiffiffi
N
6

r
¼ 1)

vqðr; sÞ
vs

¼
�
V2qðr; sÞ �N½uAðrÞ þ aAzAe4ðrÞ�qðr; sÞ if s# f

V2qðr; sÞ �N½uBðrÞ þ aBzBe4ðrÞ�qðr; sÞ if s$ f

(23)

with the initial condition q(r, 0) ¼ 1. Similarly, the backward
propagator �q(r,s), starting from the B block end, satises
4018 | Soft Matter, 2013, 9, 4015–4025
vqðr; sÞ
vs

¼
�
V2qðr; sÞ �N½uBðrÞ þ aBzBe4ðrÞ�qðr; sÞ if s# 1� f

V2qðr; sÞ �N½uAðrÞ þ aAzAe4ðrÞ�qðr; sÞ if s$ 1� f

(24)

with the initial condition �q(r, 0) ¼ 1.
The electrostatic potential is determined by a Poisson–

Boltzmann equation, which is obtained by extremizing the free
energy with respect to the electrostatic potential, i.e., dF/d4 ¼ 0

�V$

�
N3ðrÞ
4pr0b

V4ðrÞ
	
¼ NfeðrÞ þ V$

�
NpfSðrÞ
jV4ðrÞj LðpjV4ðrÞjÞV4ðrÞ

	
(25)

where L(x) ¼ coth x � 1/x is a Langevin function. fe(r) is a
summation over the charge densities of polyions and small ions
at position r, which is given as

feðrÞ ¼
X
k¼A;B

akzkefkðrÞ þ fþ;eðrÞ þ f�;eðrÞ (26)

f�;eðrÞ ¼ z�e
Vc�
Q�

exp½ � n�u�ðrÞ � z�e4ðrÞ� ¼ z�e
n�

f�ðrÞ (27)

By dening
N3effðrÞ
4pr0b

¼ N3ðrÞ
4pr0b

þ NpfSðrÞ
jV4ðrÞj LðpjV4ðrÞjÞ, the

Poisson–Boltzmann equation (eqn (25)) can then be written in a
more general and condensed form

V$

�
N3effðrÞ
4pr0b

V4ðrÞ
	
¼ �NfeðrÞ (28)

This equation is the typical Langevin Poisson–Boltzmann
equation, as presented in Iglič's study.31,32

We applied the incompressibility on the whole system
(without added salt), which gives

cP + c+n+ + c�n� ¼ cP + cPfaAn+ + cP(1 � f)aBn� ¼ 1 � cS (29)

The free energy can be split into the contributions of internal
energy U and entropy S, i.e., F ¼ U � TS, where U ¼ Uc + Ue and
S ¼ SP + SS + S+ + S�.29,30,40,41 These terms possess the following
expressions

NUc

r0VkBT
¼ N

2V

ð
dr
X
j; j0

jsj0

cjj0fjðrÞfj0 ðrÞ

NUe

r0VkBT
¼ 1

V

ð
dr

N3ðrÞ
8pr0b

jV4ðrÞj2

NSP

r0VkB
¼ N

V

ð
dr
X
k¼A;B

½ukðrÞfkðrÞ þ akzke4ðrÞfkðrÞ� þ cpln

�
QP

V

�

NSS

r0VkB
¼ N

V

ð
dr

�
uSðrÞfSðrÞ �

3effðrÞ � 3ðrÞ
4pr0b

jV4ðrÞj2
	
þNcSln

�
QS

V

�

NS�
r0VkB

¼ N

V

ð
dr
�
u�ðrÞf�ðrÞ þ 4ðrÞf�;eðrÞ


þNc�ln

�
Q�
V

�
(30)
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Numerical method

The self-consistent eld equations were solved in real space,
using a variant of the algorithms developed by Fredrickson and
co-workers.7,8,38,39 The diffusion equations (eqn (23) and (24))
were solved with the Baker–Hausdorff operator splitting
formula proposed by Rasmussen et al.,11,42 where the fast
Fourier transforms were performed by the soware package
developed at MIT.43 The Langevin Poisson–Boltzmann equation

V$

�
N3effðrÞ
4pr0b

V4ðrÞ
	
¼ f ðrÞ was solved by an ad-hoc direct spectral

method, where the f(r) was obtained by replacing the charge
densities in the right hand side of eqn (28) by those of a
previous iteration.37 The detailed ad-hoc direct spectral method
is given by

4ðrÞ ¼ F�1 �ik

k2
$F

4pr0b

N3effðrÞF
�1
h
� ik

k2
$F
�
f ðrÞ
i� 	� 	

(31)

where F and F�1 represent forward and inverse Fourier trans-
form operations. The above solution procedure involves four
fast Fourier transforms and three multiplications for a total cost
of 10M log2 M (M is the scale of the problem). This cost is much
smaller than that of solving diffusion equations. Notably, there
are a number of methods available for solving the Poisson–
Boltzmann equations with the cost ranging from O(M) to O(M3).
For example, Yang et al. recently proposed a highly efficient
multi-grid method, but there is no standard solver for this
method.23 The present method is also highly efficient as long as
the f(r) is smooth enough. More important, it can be easily
solved by employing the FFTW packages. The densities fk(r) of k
species, conjugated with the chemical potential elds uk(r), are
evaluated with eqn (17)–(22). The chemical potential elds uk(r)
and the electrostatic eld 4(r) were updated using a two-step
Anderson mixing scheme, i.e., to obtain a next guess for the
iteration, we took two previous solutions into account in every
iteration step.44

Since the present work is focused on lamellar structures,
the unit-cell SCFT calculations were carried out in one dimen-
sion with periodic boundary conditions. In the calculations,
the contour step sizes were set as Ds ¼ 0.01 and spatial reso-
lutions were taken as Dz < 0.05Rg. The simulation continues
until the relative accuracy in the elds (measured byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i

Ð
drðunew

i ðrÞ � uold
i ðrÞÞ2

�P
i

Ð
dr

s
) was smaller than 10�12

and a condition of incompressibility was achieved.45,46 To obtain
the stable structures, the free energy was minimized with
respect to the sizes of the simulation box, as suggested by
Bohbot-Raviv and Wang.47
Fig. 2 Order parameter profiles fA(z) � fB(z) of the lamellar structure of
symmetric diblock polyampholytes in polar solvents. The degree a of ionization is
fixed to be 0.1.
Results and discussion

The developed SCFT was applied to determine the phase
behavior of diblock polyampholytes (aA ¼ aB ¼ a) and charged–
neutral diblock copolymers (aA ¼ 0 and aB ¼ a) in polar
solvents. The diblock polyelectrolytes were treated to have
smeared charge distributions. For the simplicity of
This journal is ª The Royal Society of Chemistry 2013
investigations, some parameters are xed in the whole study:

3A ¼ 3B ¼ 3S ¼ 3+ ¼ 3�,
N3ðrÞ
4pr0b

¼ 1, fA ¼ fB ¼ 0.5, NA ¼ NB ¼ N/2 ¼
200, cAB ¼ 0.3, and zA ¼ z� ¼ �zB ¼ �z+ ¼ �1. In addition, to
avoid the complication resulting from possible macrophase
separation, the polar solvents are assumed to be compatible
with the polyelectrolytes, and we set cP ¼ 0.8 and cAS ¼ cBS ¼ 0.
Thus, the solution studied is in the concentrated regions.

The volume of ions is ignored in the calculations, i.e.,
n� ¼ 0 was chosen. Such a choice is due to the following two
reasons. One is that the ions are much smaller than the polymer
segments and solvents. The other is that we try to make the
results comparable to those of ref. 20. We have tested the
inuence of n� on the phase behavior of diblock polyampholyte
solutions. It was found that the n� has a less marked effect on
the charge density distributions and order parameter proles
when the n� is smaller (see Fig. S1†). Only when the n� becomes
much larger, does an obvious difference appear. For the charge
density distributions, the main difference was found in the
domain they dislike. Therefore, we think that the treatment of
n� as 0 can approximate the cases of small ions well.

Solvation effect in diblock polyampholyte solutions

We rst studied the microphase separation of diblock poly-
ampholytes in the dipolar solvents, i.e., the case of aA ¼ aB ¼ a.
Because of the symmetrical characteristic of such poly-
electrolytes, the diblock polyampholyte solutions are able to
form lamellar structures. Fig. 2 shows the effects of the
magnitude of dipole moment p on the order parameter proles
fA(z) � fB(z) of the systems with a ¼ 0.1. With increasing the p
value, the segregation between A and B blocks becomes strong,
and this effect becomes less pronounced when the p is larger.
For p ¼ 0, the LPB equation becomes the conventional PB
equation as in ref. 20, and there is no dipolar effect imposed on
the polyelectrolyte solutions. Therefore, the result for p ¼ 0 is
completely consistent with that in ref. 20 (for the sake of
comparison, the parameters chosen in this work are the same as
those in ref. 20).

Because the diblock polyampholyte solutions are more
segregated at higher p value, we might expect that the interac-
tion strength cODTN at which order–disorder transition occurs
would decrease with increasing the p value. We did nd such
Soft Matter, 2013, 9, 4015–4025 | 4019
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Fig. 4 Effective dielectric constant N3eff(z)/(4pr0b) and solvent density distri-
bution fS(z) as a function of the direction z/D along the lamellar normal. The
ionization degree a is 0.1, and the magnitude of the dipole moment p is 0.6. The
solid lines are the results calculated by our method, and the square symbols are
the results obtained from the calculation of SCFT equations with the Poisson–
Boltzmann equation (without dipoles).
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kinds of decrease, as presented in Fig. S2.† The results also
show that the decrease of cODTN upon increasing the p becomes
more pronounced for the diblock polyampholyte solutions with
larger a. When the p value is larger, the cODTN approaches that
of the neutral diblock copolymer solutions, implying that the
charged objects are almost screened. The results indicate that
the diblock polyampholyte solutions with higher magnitude of
dipole moments can be microphase-separated at higher
temperature, i.e., lower cN.

Fig. 3 shows the effect of p on the charge density proles of
the systems with a ¼ 0.1. As shown in Fig. 3a, the total charge
distributions exhibit an electric double layer near the A–B
interface, where z ¼ 0 or z ¼ 0.5 corresponds to the A–B inter-
face. The decay length is so long that the two double layers
interfere with each other. These two double layers become less
obvious as the p value increases. In addition, the total charge
becomes more negative when the p is larger. In contrast to the
total charge density distributions (centrosymmetry), the charge
density distributions of counterions are asymmetric in the A
and B domains, as shown in Fig. 3b. Since the positive coun-
terions prefer to accumulate in the domain rich in negative A
blocks, they show a higher charge density in A domains (z < 0.5).
The charge density proles of counterions exhibit a narrow peak
in their preferred domain and a broad groove in the opposite
domain. With increasing the p value, the charge density of
counterions in their preferred domains decreases, while that in
the opposite domain increases. This implies that the selectivity
of free counterions to polymeric domains becomes less
pronounced at higher p values.

In Fig. 4 we present the effective dielectric constant
N3effðrÞ
4pr0b

as a function of the position z/D along the lamellar normal. The
Fig. 3 (a) Total charge density profiles fe(z)/e and (b) charge density profiles
f+,e(z)/eofpositive counterions as a functionof thedirection z/D along the lamellar
normal for the salt-free solutions of the diblock polyampholytes with a ¼ 0.1.

4020 | Soft Matter, 2013, 9, 4015–4025
typical result manifested is for the system with a ¼ 0.1 and p ¼
0.6. Compared with the xed medium dielectric constant
N3ðrÞ
4pr0b

¼ 1 for the PB theory (p ¼ 0), the effective dielectric

constant in LPB calculations becomes inhomogeneous and
shows a strong deviation, as shown in Fig. 4. This deviation
occurs not only at the A–B interface, but also in the domains.

We found that the
N3effðrÞ
4pr0b

in the middle domain rises to above

one order of
N3ðrÞ
4pr0b

¼ 1 (p ¼ 0), and becomes even larger near

the A–B interface. For the larger p values, the
N3effðrÞ
4pr0b

can rise to

much higher orders, for example, the
N3effðrÞ
4pr0b

at p¼ 2 is roughly

two orders of
N3ðrÞ
4pr0b

. Notably, the prole of the effective

dielectric constant resembles that of the solvent density, as also
shown in Fig. 4. This can be understood by reconsidering the
formalism of the effective dielectric constant (eqn (28)). For
weak elds (p|V4| < 1), one can expand the Langevin function in
the equations into a rst-order Taylor series, and thus obtain
N3effðrÞ
4pr0b

z
N3ðrÞ
4pr0b

þ fSðrÞNp2
3

. Seen from the Taylor series, it is

clear that the effective dielectric constant is proportional to the
solvent density fS(r). This is the main reason that both the
effective dielectric constant and the solvent density have similar
distribution proles.

Since the effective dielectric constant follows the solvent
distribution, it stands to reason that the same behavior may be
obtained by solving the Poisson–Boltzmann equations with a
position-dependent dielectric constant (without explicit
solvent dipoles). This approximation is commonly used,20,48–50

and we have tested the validity of this method. In terms of

N3effðrÞ
4pr0b

z
N3ðrÞ
4pr0b

þfSðrÞNp2

3
¼
X
k¼A;B

fkðrÞ
N3k

4pr0b
þfSðrÞ

 
N3S

4pr0b
þNp2

3

!
;

we took the dielectric constant of the solvents as
N3S;eff
4pr0b

¼ N3S
4pr0b

þ Np2

3
. This dielectric constant

N3S;eff
4pr0b

is much
This journal is ª The Royal Society of Chemistry 2013
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larger than those of the polymers. Through calculating the SCFT
equations with the conventional PB equation, we obtained the
distributions of the solvents and the dielectric constant. The
calculation results are incorporated into Fig. 4. As shown in
the gure, the solvent densities obtained by these two methods
are well tted, although the effective dielectric constants are
slightly different. This implies that the approaches by consid-
ering only a varying dielectric constant are capable of capturing
the (structural) behavior of polyelectrolytes in concentrated
solutions. Strictly speaking, this approximation approach can
be more effective when p|V4| / 0 (see Section 3 of the ESI†).
However, it should be emphasized that the dielectric constants
in this approach are usually qualitative, and there is no
unambiguous method to evaluate the dielectric constants of the
dipolar medium. Rather, our study has provided a way to eval-
uate the effective dielectric constant based on the knowledge of
the dielectric constant and the magnitude of the dipole
moment. The obtained effective dielectric constant, including
an implicit ion–dipole interaction, can be used as an input for
the approaches involving only a varying dielectric constant and
no ion–dipole interactions.

Fig. 5 shows the lamellar spacing D/Rg as a function of p for
the polyelectrolytes with various degrees a of ionization. It can
be seen from Fig. 5 that, for all cases, the lamellar spacing rst
slightly decreases and then rapidly increases to a plateau, as the
p value increases. With increasing the a value, the lamellar
spacing shows a dramatic decrease at lower p value and a slight
decrease at higher p value. As a result, the changes of lamellar
spacing, responding to the change of the p value, become more
dramatic as the a value is higher. It is worth noting that, at
higher p value, the lamellar spacing reaches a plateau value of
D ¼ 5.60Rg, which is the lamellar spacing of the neutral diblock
copolymers in solutions. This suggests that the charges are
almost screened by the polar solvents when the p value is
higher.

The results shown in Fig. 2–5 have provided signicant
insight into the dependence of the phase behavior of diblock
polyampholytes on the magnitude of dipole moment p.
Regarding the nonpolar solvents (p ¼ 0), the A and B blocks
carrying opposite charges attract each other, which leads to a
Fig. 5 Lamellar spacing D/Rg as a function of the magnitude of dipole moments
p for the salt-free solutions of diblock polyampholytes with various degrees a of
the ionizations.

This journal is ª The Royal Society of Chemistry 2013
narrower spacing (Fig. 5) and broader interfacial width (Fig. 2),
at the expense of the interaction energy between the incom-
patible blocks. Moreover, the free counterions are mainly
distributed in the domain rich in the blocks with opposite
charges (Fig. 3). In this way, the charged polymeric chain gets
shielded by the mobile counterions. When the polar solvents
with various magnitudes of dipole moments are introduced,
they orient themselves to the charged objects including free
counterions and a charged polymeric chain, giving rise to a
screening of the charged objects. The screen effect is reected
by an increase of the effective dielectric constant, which is
shown in Fig. 4. As a consequence, the electrostatic attraction
between the A and B blocks decreases, and the unfavorable
interaction enthalpy drives them to be more separated (Fig. 2)
and stretched (large spacing, Fig. 5). In addition, the trans-
lational entropy drives the free counterions away from their
preferred domains, resulting in a more homogeneous distri-
bution (Fig. 3b). When the magnitude of dipole moments
increases, the charged objects become more screened, and
therefore the above phenomena are more evident. At higher
magnitude of dipole moments, the charged objects are
completely shielded, and the diblock polyampholytes thus
perform much like the neutral polymers, for example, their
lamellar spacings are nearly equal. However, there still remains
the question as to why the lamellar spacing decreases at the
onset of increasing the magnitude of dipole moments (see
Fig. 5).

To address this question, we examined the enthalpic U and
entropic S contributions to the free energy of the systems. Three
cases for the diblock polyampholyte solutions with a ¼ 0.06
were considered, i.e., p ¼ 0, p ¼ 0.2, and p ¼ 0.4. The equilib-
rium spacings of the lamellae at p ¼ 0, p ¼ 0.2, and p ¼ 0.4 are
2.82Rg, 2.64Rg, and 2.82Rg, respectively. Table 1 shows the
various enthalpic and entropic contributions to free energy for
these three cases. The terms presented in the table are the
differences between the contributions at D ¼ 2.82Rg and D ¼
2.64Rg, for example, DUc ¼ Uc(D ¼ 2.82Rg) � Uc(D ¼ 2.64Rg).
Thus, a negative value implies that the contribution to the free
energy decreases with increasing the lamellar spacing.

From the table, we can see that for all three cases, the
internal energy Uc and entropic loss �SP of the polyelectrolytes
dramatically decrease with the increase in lamellar spacing.
This implies that the formation of lamellae with larger spacing
is favored by the internal energy Uc and conformational entropy
of the polyelectrolytes. However, the translational entropy SI
(i.e., S+ + S�) of free counterions would decrease as the lamellar
spacing increases. This is due to the fact that the free counter-
ions are adsorbed to the polymeric domains carrying opposite
charges, which restricts their translations. Such a restricted
effect becomes less marked as the lamellar spacing decreases
(reduced separation) or as the p value increases (reduced
adsorption). Compared with the p ¼ 0 case, when forming
lamellae with larger spacing at p ¼ 0.2, the loss of the trans-
lational entropy �SI of the counterions becomes more
pronounced, and the electrostatic energy Ue becomes less
favorable. This is the reason that the lamellar spacing decreases
at the onset of increasing the p value. At higher p value (p¼ 0.4),
Soft Matter, 2013, 9, 4015–4025 | 4021
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Table 1 The differences of free energy DF/nkBT, internal energy DUc/nkBT, electrostatic energy DUe/nkBT, entropic loss �DSP/nkB of the polyelectrolytes, entropic loss
�DSS/nkB of the solvents, and entropic loss�DSI/nkB (SI ¼ S+ + S�) of the counterions for diblock polyampholytes with a¼ 0.06 (n¼ r0V/N). The differences are given as
Dfn¼ fn(D¼ 2.82Rg)� fn(D¼ 2.64Rg), where fn¼ F, Uc, Ue,�SP,�SS,�SI. D¼ 2.82Rg is the equilibrium lamellar spacing for the p¼ 0 and p¼ 0.4 cases, while D¼ 2.64Rg
is the equilibrium lamellar spacing for the p ¼ 0.2 case

DF/nkBT DUc/nkBT �DSP/nkB DUe/nkBT �DSS/nkB �DSI/nkB

p ¼ 0 �0.00968 �0.17526 �0.09941 �0.04564 �0.00234 0.31298
p ¼ 0.2 0.01348 �0.20596 �0.13653 �0.00413 �0.01049 0.3706
p ¼ 0.4 �0.01642 �0.15994 �0.11717 0.01417 0.05593 0.1906
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the change of the translational entropy of the counterions
becomes less marked (reduced adsorption due to the screening)
and thereby, the internal energy Uc and the conformational
entropy SP of the polyelectrolytes dominate the formation of the
structures. As a result, the lamellar spacing increases.
Fig. 7 (a) Total charge density profiles fe(z)/e and (b) density profiles f�,e(z)/
(z�e) of negative counterions as a function of the direction z/D along the lamellar
normal for the salt-free solutions of charged–neutral diblock copolymers with
aA ¼ 0 and aB ¼ 0.08.
Solvation effect in charged–neutral diblock copolymer
solutions

While the above calculations are focused on the aA ¼ aB cases,
we extended the calculations for aA ¼ 0 cases. Therefore, the
system studied becomes a salt-free solution of charged–neutral
diblock copolymers, which is another system that researchers
are interested in.23 Fig. 6 shows the dependence of the order
parameter proles on p for the charged–neutral diblock
copolymer solutions with aB ¼ 0.08. As can be seen from Fig. 6,
the p values have a less pronounced inuence on the order
parameter proles. This is due to the fact that the charged–
neutral diblock copolymers always remain well-segregated
when the magnitude of the dipole moment changes. However,
we can still identify from the enlarged proles at the interface
that the segregation between the A and B blocks becomes strong
with increasing the magnitude of dipole moments, although
such a change is less marked.

In contrast with the order parameters, the charge density
distributions of the charged–neutral diblock copolymers are
greatly dependent on the p value. Fig. 7a shows the dependence
of the total charge density distributions on the p values. Because
of the asymmetric ionizable degrees of the A and B blocks, the
total charge density proles in the A (z < 0.5) and B (z > 0.5)
domains are also asymmetric. The total charge densities in
the ionizable B domains are positive, while those in the non-
Fig. 6 Order parameter profiles fA(z) � fB(z) of the lamellar structure of
charged–neutral diblock copolymers (aA ¼ 0 and aB ¼ 0.08) in polar solvents. The
insets show the enlarged profiles of order parameters.

4022 | Soft Matter, 2013, 9, 4015–4025
ionizable A domain are negative. The interfered electric double
layers were also observed in both domains. As the p value
increases, the total charge densities becomemore positive in the
ionizable B domain andmore negative in the neutral A domains.
The change of total charge density distribution arises mainly
from the redistribution of free counterions (negative) as a
function of the p values. Fig. 7b presents the density proles
f�,e(z)/(z�e) of the negative counterions. As can be seen, the
negative counterions are mainly distributed in the domain rich
in the ionizable B blocks due to the electrostatic adsorption. The
density shows a decrease ranging from the center of the B
domain (z/D ¼ 0.75) to the middle of A domains (z/D ¼ 0.25).
With increasing the p values, the density distributions become
at, namely, the density of the negative counterions decreases in
the B domain but increases in A domains. In this sense, the free
counterions and the ionizable B blocks are screened by the polar
solvents when the magnitude of the dipole moment increases.
As a result, the translational entropy drives the free negative
counterions to be distributed more uniformly (Fig. 7b), leading
to a lower total charge density in the neutral A domains and a
higher total charge density in the ionizable B domains (Fig. 7a).
This journal is ª The Royal Society of Chemistry 2013
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Fig. 8 Effective dielectric constant N3eff(z)/(4pr0b) and solvent density distri-
bution fS(z) as a function of the direction z/D along the lamellar normal. The
ionization degrees are aA ¼ 0 and aB ¼ 0.08, and the magnitude of the dipole
moment is p ¼ 0.6.
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The screen effects are reected as the increase in the effective
dielectric constant. Shown in Fig. 8 is the dielectric constant as
a function of the direction z/D normal to the lamella. The
N3effðrÞ
4pr0b

at p¼ 0.6 are found to be about 10 times higher than the

N3ðrÞ
4pr0b

value. In addition, the
N3effðrÞ
4pr0b

is no longer symmetric in

the A and B domains. The effective dielectric constant in the
ionizable B domain is slightly higher than that in the neutral A
domain, and the maximum effective dielectric constant appears
at the interface. The prole also resembles that of the solvent
density distribution (red line). The appearance of relatively
higher solvent density in the ionizable B domain may be due to
the electrostatic adsorption between the charged B blocks and
dipolar solvents.

The lamellar spacing of the charged–neutral diblock copol-
ymer solutions at various magnitudes of the dipole moments
was also examined. The result is presented in Fig. 9. As shown in
Fig. 9, the variation of the lamellar spacing as a function of the
magnitude of dipole moments is similar to that of diblock
polyampholyte solutions (see Fig. 5). The main difference
between these two cases is the absolute magnitude of the
spacing at lower p values. We can see that the spacing of
charged–neutral diblock copolymer solutions at lower p is
signicantly larger than that of diblock polyampholyte solu-
tions, because the electrostatic adsorption between the A and B
Fig. 9 Lamellar spacing D/Rg as a function of the magnitude of dipole moment
p for the salt-free solutions of charged–neutral diblock copolymers with aA ¼ 0.

This journal is ª The Royal Society of Chemistry 2013
blocks is absent in the solutions of charged–neutral diblock
copolymers. At higher p value, this difference becomes less
marked, since the charged objects are almost shielded by the
polar solvents. For example, when p ¼ 5.0, the lamellar spacing
of both the charged–neutral diblock copolymer solutions with
aA ¼ 0.02 and the diblock polyampholyte solutions with aA ¼
aB ¼ 0.02 have the same value of about 5.6Rg.

While making a comparison between the two polyelectrolyte
systems, we learned that the effect of the magnitude of the
dipole moment on the phase behaviors has some similarity. For
both cases, the segregation between dissimilar blocks becomes
strong, and the lamellar spacing shows similar non-monotonic
variations as the magnitude of the dipole moment increases.
However, there also exist some differences. Compared with the
diblock polyampholyte systems, the variations of spacing and
segregation as a function of the magnitude of the dipole
moment become less marked in the charged–neutral diblock
copolymer solutions. In addition, the effective dielectric
constant in different domains is asymmetric in the charged–
neutral diblock copolymer solutions, while it is symmetric in
the diblock polyampholyte solutions. These differences mainly
result from the absence of charges in one block of the charged–
neutral diblock copolymers.

The present calculations demonstrate that the polar solvents
such as the water play an important role in determining the
structures and properties of polyelectrolyte solutions. For weak
polyelectrolytes (p|V4| < 1), this behavior can also be captured
by setting the dielectric constant of solvents to be
N3S;eff
4pr0b

¼ N3S
4pr0b

þ Np2

3
, using the SCFT with the conventional PB

equation. This quantitative relationship is obtained from the
LPB equation. The LPB equation in the present method is
similar to those developed by Orland et al. and Iglič et al.,31–36

but it shows some differences. The solvent density is a variable
in the present LPB equation, while remaining constant in their
formalisms. In their calculations, they found that the effective
dielectric constant decreases around the charged objects due to
the increased strength of the electric eld, according to the
second-order expansion of the effective dielectric constant
N3effðrÞ
4pr0b

¼ N3ðrÞ
4pr0b

þ fSNp
2

3
� fSNp

2ðpjV4jÞ2
45

. However, since the

solvent density fS is variable in the present formalism, the
second term in the right-hand side of the above equation plays a
predominant role, and thereby the effective dielectric constant
resembles the prole of the solvent density.

Aer nishing this work, we noted a work carried out by
Kumar et al.51 This recent published work focuses on charge
regulation and local dielectric function in planar polyelectrolyte
brushes, by considering explicit ion–dipole interactions. From
this work, we learned that the present method can be further
generalized to the systems containing other ion–dipole interac-
tions, such as the polyelectrolyte systems involving counterion
adsorption. Since themagnitude of dipole moments was xed in
their work, the effect of themagnitude of dipolemoments on the
behavior of polyelectrolytes is still unclear. In this study, we
provided a comprehensive study of such an effect, and a non-
monotonic variation of the lamellar spacing was found.
Soft Matter, 2013, 9, 4015–4025 | 4023
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Conclusions

We developed a SCFT coupled with the LPB equations for
studying the polyelectrolytes in polar solvents. The LPB equa-
tion was derived to describe the electrostatic interactions such
as ion–dipole interactions in polyelectrolyte solutions, by
modeling the polar solvents as Langevin dipoles. From the LPB
equation, we learned that the effective dielectric constant is
related to the solvent density, the magnitude of dipole
moments, and the strength of the electric eld. The LPB equa-
tion is numerically solved using an ad-hoc direct spectral
method, which is proved to be highly effective in the framework
of real-space SCFT. The method was tested for two types of
polyelectrolytes – diblock polyampholytes and charged–neutral
diblock copolymers. It was found that the effective dielectric
constant increases as the magnitude of the dipole moment
increases. The prole of the effective dielectric constant is
similar to that of the solvent distributions, indicating that the
solvent density plays a dominant role in these systems. Since
the higher effective dielectric constant can lead to the screening
of more charged objects by the polar solvents, the segregation
between dissimilar blocks becomes stronger at higher magni-
tude of the dipole moment. In addition, the lamellar spacing
undergoes a non-monotonic variation – rst it decreases and
then it increases to innitely approach the spacing of the
neutral diblock copolymers in solvents, as the magnitude of the
dipole moment increases.
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