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diblock copolymers self-assembling on spherical
substrates

Liangshun Zhang,* Liquan Wang and Jiaping Lin*

One of the main differences of ordered structures constrained on curved surfaces is the nature of

topological defects. We here explore the defect structures and ordering behaviours of both lamellar and

cylindrical phases of block copolymers confined on spherical substrates by the Landau–Brazovskii

theory, which is numerically solved by a highly accurate spectral method with a spherical harmonic basis.

For the cylindrical phase, isolated disclinations and scars are generated on the spherical substrates. The

number of excess dislocations in a scar depends linearly on the sphere radius. The defect fraction

characterizing the ordering dynamics decays exponentially. The scars are formed from the isolated

disclinations via mini-scars. For the lamellar phase, three types of defect structures (hedgehog, spiral and

quasi-baseball) are identified. The disclination annihilation is the primary ordering mechanism of the

lamellar phase.
1 Introduction

As a result of a large number of theoretical and experimental
studies, the bulk phase behaviours of linear diblock copolymers
have been well mapped out.1,2 However, newer technological
applications of copolymers for nanolithography, nanosize
bioreactors and drug delivery vehicles necessitate tailoring their
morphologies.3–6 Conning the block copolymers on substrates
introduces geometric frustration in systems, and allows mate-
rials to self-assemble into new nanostructures that are very
different from their bulk morphologies. The simple case of
block copolymers under connement is the one-dimensional
(1D) conned system, in which the block copolymers are placed
between two at parallel walls. One can observe structures, such
as perforated lamellae, parallel or perpendicular lamellae and
cylinders.7–9 The two-dimensional (2D) and three-dimensional
(3D) connements are realized by putting copolymers into
cylindrical nanopores and spherical cavities, respectively. A rich
and nontrivial variety of nanostructures including helix and
toroid are observed or predicted.10–17

One of the main differences of nanostructures of block
copolymers conned on the planar (1D) and curved (2D or 3D)
substrates is the nature of topological defects.18,19 The curvature
of the substrates imposes a topological requirement on the
equilibrium structures with defects. For instance, when the
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lamellar phase of block copolymers is conned on spherical
substrates, requirement of topological constraints should

satisfy the Poincaré–Hopf theorem
X
i

mi ¼ cE, wheremi is the

charge of the i-th defect and cE ¼ 2 is the Euler characteristic of
spherical surfaces. One can deduce the minimum number of
defects from the equation. The congurations of lamellar phase
conned on the spherical surfaces have at least four +1/2 dis-
clination defects or two +1 disclination defects. New experi-
mental techniques to create such a 3D connement are being
rapidly developed.20–27 Higuchi et al. succeeded in preparing
various types of complex structures from the diblock copoly-
mers conned in a spherical cavity by a solvent evaporation
method.22 3D structural analysis reveals that such +1/2 and
+1 disclination defects are formed in the surface regions of the
spherical cavity. However, it is much more difficult to experi-
mentally grasp universal principles of defect structures due to
the fact that precisely controlling the size and shape of the
conning environment has not been easily realized so far.

Signicant theoretical efforts have been made to understand
the defect structures of block copolymers on the at
substrates.28–30 Nevertheless, theoretical studies regarding the
defect structures and ordering kinetics of block copolymers on
curved substrates are very challenging, because they require an
accurate representation of substrates and the non-linearity is
inherent in the continuum model of this system. Currently,
theoretical and simulation investigations about the defect
structures of block copolymers in the curved space are very
limited.31–36 More recently, Chantawansri and co-workers used a
self-consistent eld (SCF) theory of inhomogeneous polymers to
explore microstructures of block copolymers conned on a
Soft Matter, 2014, 10, 6713–6721 | 6713
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sphere.33 Three types of defects of lamellar phase are observed
for symmetric diblock copolymers. Isolated disclinations are
obtained for the cylindrical phase. Nevertheless, the simula-
tions of SCF theory are limited to the case of small spheres, and
cannot capture the defect annihilation of block copolymers
conned on spherical substrates. There remains a need for
considerable advancements in terms of studying the defect
motion of block copolymer nanostructures in the large time
scale and thoroughly examining the defect structures.

To address the above challenges, we apply the Landau–Bra-
zovskii (LB) theory to study the self-assembly behaviors of block
copolymers conned on spherical substrates. The LB theory of
block copolymers can be derived from the many-chain Edwards
Hamiltonian following the method of Leibler and Ohta and
Kawasaki in the weak segregation limit.37–39 It has been well
established that the LB theory is a convenient way for studying
the kinetics of microphase separation of block copolymer
systems in the at space.40–42 Nevertheless, it has not been
implemented in curved spaces. The primary difficulty in
extending the LB theory to the spherical geometry is the
numerical solution of non-linear partial differential equations.
Here, we develop a spectral collocation algorithm with a
spherical harmonic basis, which offers high numerical accuracy
and efficiency for solving the equations. The spectral method
for the spherical geometry is an extension of the spectral
method already used in the uid dynamics.43

Beyond developing an improved numerical method for
solving the LB theory in curved spaces, we report here on
detailed numerical simulations of defect structures and
ordering behaviours of both lamellar and cylindrical phases of
block copolymers conned on spherical substrates. This new
method is able to produce defect structures identied by the
Delaunay triangulation, and obtain a relationship between the
excess dislocations and the sphere radius which, as far as we
know, was not predicted by previous simulations on the self-
assembly of block copolymers on a spherical surface. The
simulations also directly display the defect annihilation, which
cannot be observed by the static SCF simulations. Subsequently,
we further investigate the defect structures and ordering
behaviours of the lamellar phase. We expect that the present
study may offer a rational understanding of the ordering
behaviours of nanostructures on curved surfaces and some
useful information for the design of novel materials of block
copolymers.
2 Theoretical model and numerical
method

This section introduces the LB theory and our numerical algo-
rithm for solving it. We consider a thin lm of AB diblock
copolymers conned on the surface of a sphere with radius R.
Here, we assume the thickness h of a thin lm satisfying h� R.
The position- and time-dependent order parameter 4(r, t) h
4A(r, t)� fA is the deviation of the A segment density 4A(r, t) from
its average value fA. The scaled LB free energy functional of such
a system on the spherical surface s2 is given by41,44
6714 | Soft Matter, 2014, 10, 6713–6721
Fs2 ½4� ¼
ð
s2
ds

�
1
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��
1þ Vs2

2
�
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�2 þ 3

2
42 � s

3!
43 þ 1

4!
44

�
(1)

where ds is the innitesimal element of the area and Vs2
2

corresponds to the spherical Laplacian operator. The parameter
3 is a temperature-like variable, which is related to the Flory–
Huggins interaction parameter. The variable s is related to the
composition asymmetry of copolymers, and vanishes at fA¼ 0.5.
The specic relationships of the above parameters with the
composition, polymerization degree and Flory–Huggins inter-
action parameter are given in ref. 41 and 45. The phase diagram
obtained from the one-mode or two-mode approximation is
sketched in ref. 44. Since the order parameter 4 is a conserved
variable, its dynamics satises the following Cahn–Hilliard
equation, which is also known as Model B in condensed matter
physics46

v4

vt
¼ Vs2

2 dFs2

d4
þ z (2)

where dFs2/d4 denotes the functional derivative of the free
energy functional with respect to 4, and z stands for a conserved
noise satisfying the uctuation–dissipation theorem.

Next, the numerical approach to solve the non-linear partial
differential equation in the curved space is stated. Rather than
using the nite element or nite volume methods, we extend a
highly accurate spectral method to solve eqn (2). In the at
Euclidian space, an attractive way to solve the non-linear partial
differential equations with the periodic boundary conditions is
the Fourier spectral method.43 Similarly, in the case of the
spherical geometry with xed radius R, the basis of spherical
harmonics is chosen, which involves the back and forth trans-
formations between the real- and spectral-space representa-
tions. In the real space, the order parameter eld 4(r) is
represented by the spherical-polar coordinate u(4, q), where 4 ˛
[0, 2p] denotes the longitude and q ˛ [�p/2, p/2] denotes the
latitude. The spherical harmonic expansion is dened by47

4ðrÞh4ðuÞ ¼
XN
l¼0

Xm¼l

m¼�l

~4m
l Y

m
l ðuÞ (3)

where Yml (u) denotes the spherical harmonic of degree l for�l#
m # l and ~4m

l is the component of 4(u) in the spherical-
harmonic space. Since the spherical harmonics are the eigen-
functions of the spherical Laplacian operator, one can
calculate the Laplacian of 4(u) via application of the operator
termwise in the expansion of eqn (3), which is given by

Vs2
24ðuÞ ¼

XN
l¼0

Xm¼l

m¼�l

� lðl þ 1Þ
R2 ~4m

l Y
m
l ðuÞ. With this, the evolution

equation (eqn (2)) of the order parameter eld can be re-
expressed in the spherical-harmonic space

v~4m
l

vt
¼ � lðl þ 1Þ

R2

" �
1� lðl þ 1Þ

R2

	2

þ 3

!
~4m
l þ NLe m

l

#
(4)

Here, NLe m
l is the component of nonlinear term

� s
42ðuÞ
2

þ 43ðuÞ
3!

in the spherical-harmonic space. The

conserved noise term of eqn (2) is neglected in the spectral
This journal is © The Royal Society of Chemistry 2014
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Fig. 1 (a) Profile of the order parameter field for 60 cylinder domains
on the surface of a sphere with radius Rz 2.0a (a is the mean distance
of cylinder pairs). White and gray colors refer to large and small values
of the order parameter field, respectively. (b) Associated diagram of
Delaunay triangulation for the cylinders or vertices on the spherical
surface. The vertices symbolled by the small spheres denote the
centres of cylinder domains. Five-fold, six-fold and seven-fold coor-
dinated vertices are colored by blue, green and red, respectively. The
solid lines represent the connections of a vertex with its neighbours.
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method for the sake of numerical simplication. The above
equations for the order parameter eld ~4m

l are numerically
solved by a semi-implicit scheme in the equally spaced grid.48

The back and forth transformations between the real space
and spherical-harmonic space are performed by using the
SPHEREPACK 3.2 soware package.49

In our simulations, the initial congurations are the disor-
dered states, in which uniform random numbers between �0.1
and 0.1 are assigned to the order parameter eld at the lattice
sites of the spherical surface. To ensure that the observed defect
structures are not accidental, we repeat the simulations 10
times using different initial random congurations. Usually,
the initial congurations quickly evolve into ordered structures.
However, for a quenching system with a large sphere radius, the
congurations still contain lots of defects even aer a long-time
run due to a kinetically slow process of defect annihilation. To
promote the escape of metastable congurations, an annealing
process is subsequently performed. Specically, the initial
congurations of the annealing process are the nal states of
quenching simulations. The parameter 3 linearly increased with
the simulation step, but remained below the critical value of the
disorder-to-order transition, and then linearly decreased to the
initial setting value 30. The above procedure is cycled 6–10 times
until the total energy of the system with 30 at different cycles
does not change. The annealing process used in our simula-
tions may correspond to the multi-cycle annealing process in
the experiments, which has been applied to prepare
highly aligned patterns of block copolymers in the Harrison
et al. study.28
3 Results and discussion

In contrast to the microphase separation of block copolymers in
the at space, the nanostructures of block copolymers conned
on the spherical substrates depend not only on the parameters
30 and s, but also on the curvature of the sphere. The topology of
the sphere enforces a requirement of defect structures in the
equilibrium congurations. In what following, we investigate
the defects and ordering processes of both cylindrical and
lamellar phases of diblock copolymers conned on the surfaces
of spheres with different radii.
Fig. 2 (a) Profile of the order parameter field for 1052 cylinder
domains on the surface of a sphere with radius R z 8.20a. (b) Asso-
ciated diagram of Delaunay triangulation for the cylinders or vertices
on the spherical surface. The representations of colors, symbols and
lines are the same as shown in Fig. 1. The small spheres with red color
denote the vertices with seven-fold coordinated sites.
3.1 Defect structures and ordering behaviours of the
cylindrical phase

In this subsection, we choose the parameters 30 ¼ �0.13 and
s ¼ 0.3, which correspond to the case of asymmetric block
copolymers. The cylindrical phase is stable.44 In order to
determine the defect structures of the cylindrical phase on the
spherical surfaces, two main steps are performed during the
standard data post-processing. In the rst step, the cores or
vertices of cylinder domains are determined through the local
maxima of the order parameter eld. In the second step, the
algorithm of Delaunay triangulation with these vertices in the
curved space is conducted.50 It is useful to visualize the defect
structures through diagrams shown in Fig. 1(b) and 2(b), which
are constructed by lines connecting a vertex (represented by a
This journal is © The Royal Society of Chemistry 2014
small sphere) with all of its neighbours. The number of lines of
a vertex is used to identify the defect type. The ve-fold and
seven-fold coordinated vertices can be respectively character-
ized by the disclination charges +1 and �1, which are the
departure of the coordination number from the at space value
of 6. A tightly bound pair of +1 and �1 disclinations forms a
dislocation.

Defect structures of the cylindrical phase. Fig. 1(a) shows the
prole of the order parameter eld on the surface of a sphere
with radius R z 2.0a, where a is the average distance of the
cylinder pairs. The order parameter eld on the closed surface is
represented as a gray-white eld, where the gray and white
colors correspond to the small and large values of the order
parameter eld, respectively. This conguration contains 60
cylinders arranged on the spherical substrate. The associated
diagram of Delaunay triangulation is illustrated in Fig. 1(b). The
vertices correspond to the local maxima of the order parameter.
12 isolated +1 disclinations (ve-fold coordinated sites) are
observed in the Delaunay diagram. In the at space, the isolated
Soft Matter, 2014, 10, 6713–6721 | 6715
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+1 disclinations are not usually found because they produce
large distortions in the conguration. In contrast, on the curved
substrates, the disclinations help to screen out the geometric
frustration to reduce the distortions.19 In the multi-cycle
annealing process, the isolated +1 disclinations cannot be
removed away. This phenomenon manifests the fact that the
isolated +1 disclinations are an intrinsic part of the congura-
tions on the spherical substrates.

As the total number of cylinder domains or sphere radius
increases, dislocations are introduced into the system to further
reduce the distortions of isolated +1 disclinations. For instance,
the system with sphere radius R z 8.20a is quenched from the
random initial conguration, and the annealing process is
subsequently performed. As shown in Fig. 2(a), the cylinders are
arranged on the spherical surface, and the nal conguration of
the order parameter eld consists of 1052 cylinders. Fig. 2(b)
shows the associated diagram of Delaunay triangulation, which
contains 51 ve-fold, 962 six-fold and 39 seven-fold coordinated
sites. The isolated +1 or�1 disclinations are not observed in the
nal conguration. One can observe that pairs of +1 and �1
disclinations produce chains of dislocations. Note that a chain
of 5–7 pair dislocations arranged around an unpaired +1 dis-
clination, i.e., 5–7–5–7–5–7–5, is illustrated in Fig. 2(b). The
defect structures are called scars, which are experimentally
observed in the spherical crystals.51 Here, the number of excess
dislocations in a scar has a value of 3. It should be mentioned
that the scars cannot be further annihilated in the annealing
simulations, suggesting that the scar structures are an intrinsic
part of congurations on the spherical surfaces.

To quantify the behaviours of the scars, we determine the
mean number of excess dislocations in a scar from the diagram
of Delaunay triangulation, and plot the result as a function of
the relative sphere radius R/a, which is displayed in Fig. 3. Each
data point is collected from ten independent runs. Below the
critical value of the relative sphere radius (R/a)c z 5.0, only 12
isolated +1 disclinations are observed, and the dislocations
cannot be produced in this system. As the sphere radius
Fig. 3 Mean number of excess dislocations in a scar as a function of
relative sphere radius R/a. All the data points represent the average
value of ten samples. The solid line is the best-fit curve in the range of
large spherical radii, and the obtained slope is 0.435.

6716 | Soft Matter, 2014, 10, 6713–6721
increases, the isolated disclinations become much more ener-
getically cost, while the formation of dislocation chains may
reduce the energy. Above the critical value of (R/a)c, the mean
number of excess dislocations in a scar increases with the
relative sphere radius. In the range of large sphere radii, the
number of excess dislocations in a scar grows proportional to
the relative sphere radius, and the obtained best-t slope is
0.435. Since the different initial states result in the metastable
congurations with different amounts of excess dislocations in
a scar, the non-integer number of dislocation appears in Fig. 3
due to the averaging of several runs.

Ordering behaviours of the cylindrical phase. Upon
quenching the system below the critical value of the disorder-to-
order transition, the initial congurations with small random
uctuations evolve into ordered patterns. To characterize the
order degree of cylinder nanostructures, we calculate the defect
fraction to monitor the ordering dynamics. The defect fraction
at time t is dened as DF(t) ¼ (N � V6)/N � 100%,52,53 where V6
and N are the number of six-fold coordinated vertices and the
total number of vertices in the diagram of Delaunay triangula-
tion, respectively. Here, we do not distinguish the defects with
ve-fold (+1), seven-fold (�1), or other coordinated sites, and
only the total defects are collected from the diagram of Delau-
nay triangulation. The typical temporal evolution of the defect
fraction is shown in Fig. 4. From the double-logarithmic plot,
one can see that there are two stages in the ordering process of
the cylindrical phase on the spherical surfaces. The defect
fraction as a function of time t obeys the power law DF(t)f t�1/3

for the time from 0 to 102s, and DF(t) f t�1/5 for the time from
102s to 103s. Here, s is the time unit in simulations. At the early
stage of the ordering process, the spherical substrate cannot
affect the kinetic behaviour, which obeys the evaporation–
condensation mechanism derived by Lifshitz and Slyozov in the
Fig. 4 Typical time evolution of the defect fraction of the cylindrical
phase on the spherical surface during the quenching simulation. The
defect fraction at time t is defined as DF(t)¼ (N� V6)/N� 100%, where
V6 and N are the number of six-fold coordinated vertices and the total
number of vertices in the diagram of Delaunay triangulation, respec-
tively. Each data point is collected from ten independent runs. The
error bars are successively skipped one point for the sake of clarity.
Two solid lines represent the best-fit power laws in the range of early
and intermediate stages of the ordering process.

This journal is © The Royal Society of Chemistry 2014
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at space.54 As time proceeds, the decay of the defect fraction is
slower than that of the early stage, and the defect annihilation is
strongly affected by the geometrical characteristics of the
substrates. It should be mentioned that the sphere radius can
affect the transition time of the scaling law in the quenching
simulations.

At the late stage of simulations, the total number of cylinder
domains does not further change, but the scars are generated by
the local motion of disclinations and dislocations. Fig. 5 shows
the formation of a scar on the spherical surface at the late stage
of quenching simulation. Snapshots (a) and (d) are the initial
and nal congurations of scar formation within the high-
lighted area, respectively. For the sake of clarity, snapshots (b)
and (c) display a portion of congurations. In the bottom of the
highlighted area, there is a high-angle grain boundary, as
shown in Fig. 5(a). The near +1 disclinations are unstable, and
start to locally re-arrange. A new 5–7 pair dislocation is gener-
ated (Fig. 5(b)). Subsequently, the new dislocation glides
towards the nearest isolated +1 disclination, and quickly forms
a mini-scar (5–7–5 grain boundary), which is illustrated in
Fig. 5(c). Eventually, the mini-scar further joins the nearest 5–7
pair dislocation to generate a 5–7–5–7–5 scar (Fig. 5(d)).

The formation of scars on the spherical surfaces is similar to
that reported in the experimental and theoretical studies of
Bowick et al.55,56 In their studies, one colloid is added to or
subtracted from the initial structures of spherical crystals. The
curvature of the sphere drives the formation of dislocations.
The individual dislocation then glides towards the nearest
Fig. 5 Typical formation process of a scar within the highlighted area.
Time: (a)Dt/s¼ 0, (b) Dt/s¼ 35, (c)Dt/s¼ 90, and (d) Dt/s¼ 155. Here, s
is the time unit in simulations. Snapshot (a) displays the initial config-
uration from the quenching simulation, while snapshot (d) displays the
configuration where a scar is formed within the highlighted area. For
the sake of clarity, only one portion of the diagram of Delaunay
triangulation is drawn in snapshots (b) and (c). The representations of
colors, symbols and lines are the same as shown in Fig. 1. The arrows
indicate the motion directions of vertices.

This journal is © The Royal Society of Chemistry 2014
isolated disclination. The dislocation binding with the dis-
clination forms 5–7–5 mini-scar. As shown in Fig. 5(b) to (d), the
formation of scars from isolated +1 disclinations via mini-scars
is observed. The process of scar formation is in general agree-
ment with the ndings of Bowick et al.

We wish to emphasize that although the LB theory of block
copolymers can predict the scar structures and scar formation,
there exists a signicant difference between the block copoly-
mers and colloids conned on the spherical surfaces. In the
system of colloids, the shape and size of colloids are not per-
turbed by the strain eld of defects, and the number of colloids
is xed in the particle motion. However, the polymer chains can
stretch to change the shape of the cylinder domains due to the
strain eld introduced by the disclinations, and the coalescence
of cylinder domains may take place in the evolution. These
result in the fact that the number of cylinder domains is not a
conserved variable. Therefore, for the system of colloids, the
kinetic behaviors of defect structures may experience some
degree of variations.
3.2 Defect structures and ordering behaviours of the
lamellar phase

In this subsection, we turn to investigate the lamellar phase of
symmetric block copolymers conned on the spherical
substrates. The parameters are set as 30 ¼ �0.2 and s ¼ 0.0.44

The system size is characterized by the ratio 2pR/d, where R is
the sphere radius and d is the average repeat spacing of
lamellae. In the present work, because of the difficulty in the
automated recognition algorithm of defect structures of the
lamellar conguration in the curved space, we only concentrate
on the defect structures and the ordering process of the lamellar
phase on the spherical surfaces.

Defect structures of the lamellar phase. The lamellar phase
is analogous to the smectic-A liquid crystals. Here, we use the
type of defect of liquid crystals to characterize the defect
structures of the lamellar phase. The +1/2 and +1 disclinations
are illustrated in Fig. 6. More details about the defects of liquid
crystals can be found in the monograph of de Gennes and
Prost.57

Fig. 6 summarizes the obtained defect structures of the
lamellar phase on the surface of a sphere with a small radius in
the multi-cycle annealing simulations. The le column in Fig. 6
displays the proles of the order parameter eld on the spher-
ical surfaces. To gain a better view of the corresponding
conguration on the spherical surface, we also plot the modi-
ed Mercator projections, which are illustrated in the right
column of Fig. 6. The horizontal and vertical axes respectively

refer to the x ¼ R4 and y ¼ 5
4
R ln

�
tan
�
p

4
þ 2

5
q

		
, where

4 ˛ [0, 2p] denotes the longitude and q ˛ [�p/2, p/2] denotes
the latitude. Here, the defect structures of the lamellar phase on
the spherical substrates could be empirically classied into
three categories.33 The rst class is the quasi-baseball defect
structure, as shown in Fig. 6(a). Four +1/2 disclinations denoted
by the red circle symbols are equally spaced at 90� intervals on a
great circle. The quasi-baseball structure contains more than
Soft Matter, 2014, 10, 6713–6721 | 6717
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Fig. 6 Defect structures of the lamellar phase confined on the
spherical substrates. (a) System size 2pR/d z 10.0, quasi-baseball
defect structure; (b) system size 2pR/d z 11.0, spiral defect structure;
and (c) system size 2pR/d z 12.0, hedgehog defect structure. White
(gray) color refers to large (small) values of the order parameter field.
Left column shows the profiles of the order parameter field on the
spherical surfaces. The curve on the spherical surface denotes the
longitude 4 ¼ 0 and the range of latitudes q ˛ [�p/2, p/2]. Right
column is the modified Mercator projections of the order parameter
field. The horizontal and vertical axes respectively refer to the x ¼ R4

and y ¼ 5
4
R ln

�
tan

�
p

4
þ 2

5
q

		
, where 4 ˛ [0, 2p] denotes the longi-

tude and q ˛ [�p/2, p/2] denotes the latitude. The red circles and
squares represent the cores of +1/2 and +1 disclinations, respectively.
The curve in the projection represents a great circle passing through
the defect cores.

Fig. 7 Snapshots of the ordering process of the lamellar phase in the
quenching simulation. Time: (a) t/s ¼ 300, (b) t/s ¼ 5000, (c) t/s ¼
28 000, and (d) t/s ¼ 50 000. Left column shows the profiles of the
order parameter field on the surface of a sphere with 2pR/d z 51.0.
Right column is the modified Mercator projections of the order
parameter field. The representations are the same as shown in Fig. 6. In
panel (d), the red circle and square denote respectively the cores of
disclination and dislocation, and the dashed box encloses the grain
boundary.
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two stripes. The strip termination can appear at the core of each
disclination. The second class, as illustrated in Fig. 6(b), is
called the spiral defect structure. The structure has the same
number of disclinations as the quasi-baseball structure.
However, the four +1/2 disclinations are not evenly spaced. The
spiral structure contains only two continuous stripes. The
stripes are spirals around the cores of disclinations, and
terminate at the centre of other disclinations. The third class is
called the hedgehog defect structure, as observed in Fig. 6(c). All
stripes are circularly arranged on the spherical surface, and
there are two +1 disclinations at the two opposite positions of
the sphere. It should be noted that Chantawansri et al. devel-
oped a self-consistent eld theory in the spherical geometry to
investigate the defect structures of the lamellar phase of block
copolymers.33 The defect structures including hedgehog, quasi-
baseball and spiral are predicted in their calculations.
Furthermore, by quantitatively analysing the free energy density
of the structures, they found that the quasi-baseball defect
structure is metastable, and its energy is close to that of the
spiral defect structure.

It is difficult at this time to make a comprehensive
comparison between the theoretical predictions and
6718 | Soft Matter, 2014, 10, 6713–6721
experimental observations due to limited experimental studies
on self-assembly behaviours of block copolymers conned on
the spherical substrates. However, we can still compare the
calculation results with some existing studies. For example,
Higuchi et al. reported microphase-separated structures of
polystyrene-block-polyisoprene (PS-b-PI) by a 3D connement.22

A 3D reconstructed technique is used to identify the nano-
structures of block copolymers. They found that the complex
structures are only formed in the surface region of the sphere
cavity. Ring structures of the PS phase and the PI phase are
arranged at the spherical surface. Another type of morphology is
the “helix” structure, where the PS phase twists around the PI
phase. According to the simulation results, when the symmetric
block copolymers are conned on the spherical surfaces, the
lamellae are circularly arranged on the spherical surface
(Fig. 6(c)), which corresponds to the ring structure in the
experiment. As shown in Fig. 6(b), two continuous lamellae
mutually twist. This structure is very similar to the “helix”
structure in the experiment.

Ordering behaviours of the lamellar phase. Fig. 7 shows the
evolution of the lamellar phase conned on the surface of a
sphere with a large radius aer quenching from the
This journal is © The Royal Society of Chemistry 2014
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homogenous state. Due to the disordered initial conguration,
randomly distributed lamellae are observed at the early time
(Fig. 7(a)). The poor orientation lamellae locally re-arrange to
form the highly aligned lamellae, and the dislocations and
multi-poles of disclinations are annihilated by the motion of
defects. The facts result in an increase of order degree of
lamellar conguration at the intermediate stage (Fig. 7(b) and
(c)). In the quenching simulation of the system with a large
sphere radius, the resulting conguration is usually the “poly-
crystalline” state with randomly oriented lamellae. Fig. 7(d)
illustrates the nal conguration of lamellae on the surface of a
sphere with radius 2pR/d z 51.0. The characteristic of such a
conguration is the presence of a large amount of defects, such
as grain boundaries, dislocations and disclinations, which are
also highlighted in Fig. 7(d). Comparison between the cong-
urations of different times t¼ 2.8� 104s (Fig. 7(c)) and t¼ 5.0�
104s (Fig. 7(d)) indicates that the evolution of the order
parameter eld cannot further annihilate the defects, and the
conguration remains practically constant beyond t ¼ 5.0 �
104s in the quenching simulation.

A typical example of defect annihilation on the spherical
substrate is illustrated in Fig. 8. A portion of the lamellar
conguration is extracted from the prole of the order param-
eter eld on the spherical surface. Panel (a) shows a disclination
dipole with the +1/2 and �1/2 disclination cores, and a grain
boundary evolving from a disclination dipole. The spacing
between them is widely separated. The high strain energy of the
disclination dipole causes the defects to evolve. The fact gives
rise to production of a grain boundary, as observed in the le of
panel (b). Subsequently, this defect structure climbs normal to
the boundary, and the defect motion reduces the separation
distance of defect pairs, which is illustrated in panel (c). The
disclination dipole in the bottom right of panel (c) is the result
of defect motion, which is out of the portion of the lamellar
Fig. 8 Snapshots of defect annihilation. (a) Dt/s ¼ 0, the spacing
between the disclination dipole and the grain boundary is widely
separated. (b) Dt/s ¼ 4600, the dipole of disclinations evolves into a
grain boundary. (c) Dt/s ¼ 5900, the spacing between the defects
decreases. (d) Dt/s ¼ 6200, the number of defects decreased, but a
dislocation still exists in the bottom right. The panels are only a portion
of the lamellar phase on the spherical surface. The cores of +1/2
disclinations, �1/2 disclinations and dislocation are indicated by the
red circles, blue circles and red square, respectively. The grain
boundaries are enclosed by the dashed boxes.

This journal is © The Royal Society of Chemistry 2014
conguration. Finally in panel (d), the disclination dipole and
grain boundary are annihilated by the local motion of defects to
reduce the strain energy, and only a dislocation remains in the
panel.

The type of defect annihilation described above is the main
mechanism of the ordering process of the lamellar phase on the
spherical surfaces for the set of parameters chosen in this study.
It is very similar to the defect annihilation identied by Harri-
son et al. on the at substrates. Harrison et al. studied the
ordering dynamics of the lamellar phase of block copolymers in
a thin lm.28 The results reveal that the annihilation of quad-
rupole consisting of two disclination pairs is the dominant
mechanism of the ordering process. Like Harrison's study, the
process of defect annihilation in our simulations involves the
disclinations and grain boundaries. As shown in Fig. 8,
the grain boundary evolves from the disclination dipole, and
re-organizes into a disclination dipole due to the defect motion.
Thus, the ordering mechanism in our simulations is very
similar to that reported in the experimental ndings by Harri-
son et al. It should be mentioned that the annihilation of
dislocations is not frequently observed due to the small size of
the system in our simulations.

Unlike the intrinsic defects on the spherical surfaces (Fig. 6),
the defects of the lamellar phase on the surface of a large sphere
can be further annihilated by the annealing simulation. Fig. 9
shows the ordering process of the lamellar phase in the
subsequent annealing process. The initial state is the congu-
ration with defects of grain boundaries, dislocations and dis-
clinations (Fig. 7(d)). Aer several cycles of the annealing
process, the defects of the lamellar conguration are gradually
annihilated, and the lamellar patterns with highly aligned order
on the spherical surface are observed in Fig. 9(a). Aer sufficient
cycles of the annealing process, the well-aligned lamellae
dominate the spherical surface (Fig. 9(b)). However, the four
+1/2 disclinations located on a great circle still exist on the
spherical surface. The nearest cores of disclinations are sepa-
rated by about 4 stripes. According to the classication of
defects, the defect structure of this lamellar conguration is
spiral.

Although the LB model and spectral method presented here
provide a powerful methodology for studying the defect struc-
tures and ordering behaviours of block copolymers on the
Fig. 9 Snapshots of the ordering process in the annealing process.
The initial state is the configuration of Fig. 7(d). (a) Configuration after
6 cycles of the annealing process and (b) configuration after 10 cycles
of the annealing process.
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spherical substrates, there are still some drawbacks for the
cases of tackling the complex systems or geometries. Here, a few
comments on the model and numerical method are in order.
First of all, for complex systems containing block copolymers,
there are certainly some opportunities to improve the model.
For instance, the free energy functional used in the model is a
simplied form of density functional theories in the weak
segregation limit, and does not explicitly take into account the
conformational entropy of polymer chains. To solve this
problem, one can replace eqn (1) with a free energy form of
coarse-grained microscopic model, e.g., self-consistent mean-
eld theory of inhomogeneous polymers, which accounts for
the chain connectivity and provides a unied treatment of
polymer systems from the weak to strong segregation regions.58

With these improvements, one can accurately calculate the free
energy of different structures, and distinguish the metastable
congurations of spiral and quasi-baseball defects on spherical
substrates.

Secondly, the surface topology in our present study is the
spherical geometry, and a spherical harmonic basis is adopted
to numerically solve themodel equations. It is difficult to extend
the numerical method used in our simulations to more complex
geometries ranging from ellipsoids to cylinders and spheres
with a bump. To overcome the drawback, Marenduzzo et al.
recently proposed a modied nite element algorithm to
discrete the Laplace–Beltrami operator and non-linear terms of
the free energy.59 They applied the algorithm to tackle the
problems of phase separation dynamics on the non-spherical
surfaces. It is possible to extend the nite element scheme to
solve the equations of the LB model or self-consistent eld
theory of polymers, and to investigate the defect structures and
dynamics behaviours of block copolymers on the complex
geometries, such as the negative-curvature surfaces.
4 Conclusions

In summary, the LB model of block copolymers, which is
numerically solved by the spectral method with a spherical
harmonic basis, is used to investigate the defect structures and
ordering dynamics of both cylindrical and lamellar phases on
the spherical substrates. For the cylindrical phase, the isolated
disclinations emerge in the system with a small sphere radius.
The scars are formed on the surface of a sphere with a large
radius, and the number of excess dislocations in a scar is line-
arly proportional to the sphere radius. The defect fraction of the
cylindrical phase exponentially decays, and the formation of
scars from isolated disclinations via mini-scars was observed.
For the lamellar phase, the defect structures of hedgehog, spiral
and quasi-baseball are produced on spherical substrates, and
the disclination annihilation is the dominant ordering mecha-
nism of the lamellar phase.
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